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Abstract. In the spirit of some earlier work on building coherent states for the Pdrgrarup

in one space and one time dimension, we construct here analogous families of states for the
full Poincagé group, for representations corresponding to nwass 0 and arbitrary integral or
half-integral spin. Each family of coherent states is defined by an affine section in the group
and constitutes a frame. The sections, in their turn, are determined by particular velocity vector
fields, the latter always appearing in dual pairs. Geometrically, each family of coherent states is
related to the choice of a Riemannian structure on the forward mass hyperboloid or, equivalently,
to the choice of a certain parallel bundle in the relativistic phase space. The large variety of
coherent states obtained tempts us to believe that there is rich scope here for application to spin-
dependent problems in atomic and nuclear physics, as well as to image reconstruction problems,

using the discretized versions of these frames.

1. Introduction

Following some earlier work [3, 4toherent state¢CS) will be associated in this paper with
particular types ofquare integrablerepresentations of groups (see also [6] for a general
review of the theory). Specifically, lefF be a locally compact group angd +— U(g) a
unitary, irreducible representation (UIR) 6f on the (complex, separable) Hilbert spage
Let H C G be a closed subgroux = G/H the left coset space, which will be assumed
to carry theinvariant measurev (under the natural action a@f on X). Suppose that there

exists a (finite) set of vectorg’, i = 1,2,...,n, in $ and a Borel sectiow : X — G,
such that
> / L)l @) =4 b, = U @) (1.1)
i=1YX

where A is a bounded positive operator ¢y with a densely defined inverse. The integral
in (1.1) is assumed to converge weakly. We then say that the represeritaiosquare
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integrablemod(H, o), and call the set of vectors
S={nhylxeX i=12...nCH (1.2)

afamily of covariant coherent stat€€S for short), for the representatiéh If it so happens
that A~ is also a bounded operator, then we say that the family of@&Sorms arank-n
frame denotedj—'{nf,(x), A, n}. If Ais a multiple of the identity operatar on §), we say
that the frame idight. In this case, by appropriately normalizing thewe may actually
makeA = I, and then (1.1) is said to generateesolution of the identity

Covariant CS for the PoinoﬁargroupPl(l, 1), in one space and one time dimension,
for UIRs corresponding to mass > 0, have been studied exhaustively in [4, 5]. These
states are labelled by points of the homogeneous space; Pi(l, 1)/T (T = time
translation subgroup), and each family of CS is associated with a cetfanme section
c: I — Pl(l, 1). The set of all affine sections itself enjoys interesting mathematical
properties, including a type daduality, which groups members of the set into pairs. In
particular, there exists aymmetricsection which is self-dual. The full Poiné&group
731(1, 3) had been studied earlier, and a special class of CS was obtained in [7, 13]. These
CS were built out of UIRs corresponding to mags> 0 and spins = 0,1, 2,.... In the
context of thePI(l, 1) CS, these other CS fdPi(l, 3), were all related to one particular
section,oc = oy, the Galilean section. Some early results on constructing CS for th(%spin-

m > 0 representation dPl(l, 3) were reported in [14]. Because of the particular choice

of the measure on the phase sp&ceised in that paper, the resulting CS did not constitute

a frame, and hence could not generate a resolution of the identity. Nevertheless, the results
obtained there show how bispinor (or Dirac) type CS may be constructed, allowing one,
among other things, to arrive at a Dirac equation on the phase space. Coherent states for
the De Sitter and Poincaigroups, arising from particular sections were also studied in [10].

The present paper extends the results in [4, 5] forﬂie{l, 1) CS, to any UIR of
PL(1,3), form >0ands =0,2,1,3,.... Justas in the”] (1, 1) situation, each family
of CS is associated with a particular affine section, and one always obtains a frame in this
manner. The final result is enunciated in proposition 7.3. Moreover, for specific situations,
the frame can be made tight, thus leading to a resolution of the identity. Since the base
space, on which the sections are now defined, is much larger than 'rﬁithb 1) case,
the full significance of the duality mentioned above becomes clear. Each affine section is
characterized by a 4-vector fieldp) = (uo(p), u(p)), (p is a relativistic 4-momentum on
the mass shell), which maps the forward mass hyperboffido itself. Thedual sectionis
then characterized by the 4-vector fieltl(p), obtained by applying the Lorentz boas,
to u(p) = (uo(p), —u(p)), pointwise for allp. Furthermore, each section is seen to define
a Riemannian structuren the forward mass hyperboloid, considered as a manifold.

This Riemannian structure is, in its turn, the restriction to the tangent bundid aff a
pseudo-Riemannian metric of signatyB; 1) on an ambient vector bundle, which is also a
homogeneous space @ffr(l, 3). It turns out that we have an illustration here of the use of
parallel bundles, in the sense of [9], for constructing CS.

The result is that obtain a wide class of families of CS for the Poicgioup, for
arbitrary spin. The richness in their variety tempts us to believe that they would prove
useful in studies of spin related effects in atomic or nuclear physics, as well as in more
theoretical studies on quantization of systems with internal degrees of freedom. It ought to
be pointed out that the CS obtained in this paper are similar to the vector CS studied in
[16]. However, the situation envisaged here is more general than that in [16], since in our
case, the subspace generated by the ‘fiducial vectors’ is not stable under the action of any
non-trivial subgroup ofP! (1, 3).
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2. Notational conventions

By the full Poincaé group we mean the 2-fold covering grouﬁ,(l, 3 =T*Q®SL(2,0),
where T# ~ R; 3 is the group of space-time translations. Elementg?étl, 3) will be
denoted by(a, A), with a = (ap, a) € R13, A € SL(2,C). The multiplication law is
(a,A)(d,A) = (a + Ad’, AA"), whereA € El(l, 3) (the proper, orthochronous Lorentz
group) is the Lorentz transformation correspondingito

A" = 1Tr[Ac,Alo,] w,v=0,1,23 (2.1)
ol =o0,, 0% =0, ando? = o, are the Pauli matrices;® = I, and the metric tensor is
goo=1= —g11=—goo= —gs3. Let

Vi = {k = (ko. k) € Ryg| k> = k§ — k* = m?} 2.2)
be theforward mass hyperboloidwe takec =% = 1). Then
K'=Ak =0 -k =Ac - kAT (2.3)

with o - k = o*k, = kol — k- 0, 0 = (04, 0y, 07).
In the Wigner realization, the unitary, irreducible representatigy of Pi(l, 3) for a

B . l 3 . . -
particle of massn > 0 and spins =0, 3,1, 3, 2, ..., is carried by the Hilbert space
fj;/V — (CZH-l ® L2 (V;l—’ c]ik> (24)
0

of C*+1-valued functionsp on V;, which are square integrable:

dk
/ (k) (k) = ol = (plp) < 0. (2.5)
Vi 0

Explicitly
(U3 (a, A)p) (k) = € D* (h(k) " *AR(A ™ k) (A k) k-a=koao—k-a (2.6)

whereD* is the (2s 4+ 1)-dimensional irreducible spinor representationSaf (2) (carried
by C**+1) and

mly+o -k
2m(kg + m)

is the image inSL(2, C) of the Lorentz boost;, which brings the 4-vectofm, 0) to the
4-vectork in Vi

Ar(m, 0) = k < h(k) mIp h(k) = m[h(k)]?

_ ko+ k. ke — ik,
:a.kz( . ) (2.8)
ke +ik, ko — k.

k — h(k) = (k = (ko, —k)) (2.7)

The matrix form of the Lorentz boost is
1 ko kf
Ak=< ):AkT (2.9)
m k ka
whereV, is the 3x 3 symmetric matrix
kQ k'

I AR S VA 2.10
m(ko + m) k k ( )

Vi=1Iz+
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The following properties of\;, andV; are useful for computational purposes and are easily
verified:

() detA; = 1; A has the spectrum
1 1
Sp(AY) = {m(ko + kD, 1, 1} = Al = %(ko + kD - (2.11)

(ii) The matrix V, has the properties

k k
detVj = -2 Vil = =2 v =1 (2.12)
m m
EQkf
vi=vili=v - . 2.13
k k k mko ( )
Furthermore
1 k-p 1
(Akp)o= —(kopo+k-p) = =P (Axp) = —kpo+ Vip (2.14)
m m E— m
the underline denoting the spatial part of a 4-vector, while
ko(Axp) — k(Axp)o = koV ' (2.15)
from which it follows that
[ko(Axp) = k(Aup)o| < Kollpl (2.16)

Also, sinceA;* = A, we have (k)= = h(k).

3. Coherent states for massive, spis-particles on the phase space

A classical (spinless), relativistic particle has a phase space which can be identified with
I =Pl 3)/(T x SU2) (3.1)

where T denotes the subgroup of time translations. For a particle with non-zero spin
(treated as an additional classical degree of freedom), a geometric quantization programme
[19] would normally start with the phase spdce= Pi(l, 3)/T x SO(2). However, since
geometric quantization is not our objective here, we chabse(3.1) as the phase space for

a particle with arbitrary spin. (In the terminology of geometric quantization, this means
working on aC%+1-bundle, rather than on a line bundle.) Rore SL(2, C), let

A = h(k)R () R(k) € SU(2) (3.2)

be its Cartan decomposition. An arbitrary eleméntA) € 7?1(1, 3) has the left coset
decomposition

(a.A) = ((o, a— “‘”") , h(k)) ((’"ao o), R(k)) (3.3)
ko ko

according to (3.1). Thus, the elementslirhave the global coordinatizatiotg, p) € R®:

q:a—i p:k. (3.4)
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In terms of these variables, the action Ef(l, 3) onT is given by(q,p) — (¢',p) =
(a,A)(q,p)

1
¢ = (phla+ A0 @) - plao+ (AQ. @)lo])
Po

p'=Ap p=(/m?+p? p)

whereA € ﬁi(l, 3) is related toA by (2.1), andp; = (Ap)o. It can be shown [2] that the
measure ddp is invariant under this action, and hence represents the invariant measure
on T, in the variableqq, p).

Next, in terms of these variables let us define the basic section

oo:T > PL(L3  with oo(q.p) = ((0.q). h(p)) (3.6)

which we call theGalilean section Any other sectiorv : ' — 7?1(1, 3) is then related to
og in the manner

o(q, p) = oo(g, p) (f (g, p), 0), R(q, p)) (3.7)
where f : R® — R andR : R® — SU(2) are smooth functions. As in the case?@ﬁ(l, 1),
we work again withaffine sectionsfor which the functionf is of the form

f(g@.p) = ¢ +q-9(@p) (3.8)

whereg : R® — R, 9 : R® — R3 are smooth functions gf alone. Again, it can be shown
that as far as the construction of CS is concerrgednly introduces an inessential phase.
Hence, we sep = 0. Moreover, we also impose the restriction tiRly, p) = R(p) be a
function of p alone. Writing

(3.5)

o(q,p) = (4, h(p)R(p)) g =(Go, @) € Ry3 (3.9)
we see that
do=pB({) - q (3.10)
whereg is the 3-vector field
Pov(p) mB(p)
=_ 7 that v(p) = —— . 3.11
A®) m+p - 9(p) soha ®) po—p - B(p) @10
Let us also introduce thdual vector field3*
" p— mvpﬂ(p)
= P 3.12
7@ po—p-B(P) (3.12)

whereV, is the matrix defined in (2.10). The significance of this dual quantity will shortly
become clear. First note that

1
B =p and dp) = [p- mV, 3" (p)]. (3.13)

We now take an arbitrary affine section and going back to the Hilbert spagg, in
(2.4) choose a set of vectorg, i = 1,2,...,2s + 1, in it to define the formal operator
(see equations (1.1) and (2.6)):

2541
i=1

From the general definition, in order for the set of vectors
G =Nyqp | @pP eR® i=12_...20+1) C 9 (3.15)



5534 STAlietal

to constitute a family of coherent states for the representdiipn the integral in (3.14)
must converge weakly, and defize, as a bounded operator with inverse. In fact, it will
be possible to choose vectaps such that for each affine sectien both A, and A;* are
bounded, i.e. each family of C&,, will define a rank¢2s + 1) frame.

To study the convergence properties of the operator integral in (3.14) we have to
determine the convergence of the ordinary integral

25+1

Iy = Z ‘/15§6<¢|77£;(q,p)><77;(q,p)|¢> dq dp (3.16)
i=1

for arbitrary ¢, ¥ € 97,. In (3.9) set

A(p) = h(p)R(D) and  A(p) = A,p(p) (3.17)

Wheref\(p) and p(p) are the matrices in the Lorentz grouﬂi(l, 3) which correspond to
A(p) and R(p), respectively. Then

T g () = EXP—i X (k) - @) D* (w(k, p)m’ (A(p) %) (3.18)
where

X(k)=k— "'7‘)19(1)) (3.19)
and

vk, p) = h(k)"*A(p)h(A(p) k) € SU(2). (3.20)

Substituting into (3.16) yields

2541

Ipp=Y_ expl—i[ X (k) — X (K)] - @) o) D* (w(k, p))
=1 YROX VI x V)

/

A _ A _ dk dk
<1 (A(p) ' A(p) KD (K, PIYE) - dadp. (3.20)
0

In order to perform thé, k’ integrations in (3.21), we need to change variables> X (k).
Computing the Jacobiaffx (k) of this transformation from (3.19) we obtain

0X;
ok;

1 ,
Ix (k) = < (k)> =lz3+ —— 9(p) ® [kop — kpo]' (3.22)
mko

which has the determinant
1
det[7x (k)] = 1+ mko 9(p) - [kop — K po]. (3.23)

Since atk = p = 0, det[7x (k)] = 1, and since in order to change variables we need
det[7x (k)] # 0, we must impose the condition that

deti7x (k)] >0 ¥ (k,p). (3.24)

This, in turn, imposes restrictions af, and hence on the 4-vectgr= (go, @) in (3.9),
which we proceed to study next.
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4. The B-duality and space-like sections

Rewriting (3.23) in terms of3* (see the appendix)
A
Po(Axplo |:1_|_ (Axp) .
mkg (Axp)o
wherep(k — p) is the rotation matrix
plk — p) = AP AN A 4.2)

Thus, the positivity of detfx(k)], as required by (3.24), would be ensured if the
second term within the square brackets in (4.1) did not exceed 1 in magnitude, i.e. if
1B*(p)|| <1, V p. This is made precise in the following proposition (we give the proof in
the appendix).

detTx (k)] = Pk — pﬁﬁ*(p)] @.)

Proposition 4.1.The following conditions are equivalent:
() The 4-vectorg = (go, q) is space-like, i.e.

lGol” — 411> < 0. (4.3)
(ii) The matrix

T
S(p, 9) =I5 + [19@ (p - g) + (Z - g) ®19T} (4.4)

m

is positive definite for allp € V.
(iii) For all p € R3, the 3-vector field3 obeys

18I <1 (4.5)
(iv) For all p € R3, the 3-vector field3* obeys
18" (@I < 1. (4.6)

Consequently, we have the next result (again, we give the proof in the appendix).

Proposition 4.2.The condition (3.24), det[x (k)] > 0, holds for allk, p € R? if and
only if the 4-vectorg = (go, q) is space-like, i.e. if and only if any one of the equivalent
conditions in proposition 4.1 is satisfied.

An affine sections, for which the corresponding 3-vectdr or 3 satisfies any one of
the equivalent conditions of proposition 4.1 will be calledmace-like affine sectioriWe
could now go back to (3.21) and, assuming proposition 4.1 to hold, carry out the change of
variables to get estimates ¢fy, |, thereby arriving at conditions under which (3.14) would
define a bounded invertible operatég. This would ensure that (3.15) does indeed define a
family of CS for the representatioli, of Pl(l, 3). However, let us first analyse, in some
detail, the geometry of the sections and the relativistic meaning of the duality befiveen
and 3*.

5. Geometry of the 3-duality; Riemannian structures

The groupP! (1, 3) has the actionx — x’ = (a, A)x = a + Ax, on T*. ConsideringT*
as a manifold, we identify its tangent spafg(T*), at any pointx, with T7* itself. The
derivative T (a, A) of the mapx — (a, A)x atx € T* is simply A. Let T* be the
dual space off* and considerT* x T# as the cotangent bundle @f*. (Note: While
in conformity with standard usage, we use an asterisk to denote the dual space, this does
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not reflect the duality implied by th8* of the last section). Then any, A) € Pfr(l, 3
induces the actionix, x*) — (a + Ax, A*x*) on (x, x*) € T* x T*, whereA* is defined
by (x*; Ax) = (A*x*;x), ¥ x € T%, (-; -) being the dual pairing betweeR* and 74*.
In particular, take(x, x*) = (0, 1,,), 1,, being the (non-zero) element i* left invariant
by rotations, i.ep*1, = 1,,, wherep € El(l, 3) is a rotation. The orbit of this point, in
T*x T*, under the action 0P (1, 3), can be identified with"* x V. Note also that, since
the tangent spacg.-(T*), to T* at a pointx* € T*, can again be identified wittf*
itself, and sinceV 7%, it follows that at anyp € V;, the tangent spacg, (V) c T*
and the cotangent spad& (V,)) C T#. ConsiderT* x V) as a vector bundle with base

spaceV; and fibreT* abovep € V. The sub-bundle
W={(x,p)eT*xV} | (wx)=0, Vw e,V (5.1)

is called anormal bundleover V! [1, 9], and we denote the fibre &¥, abovep € VI, by
W,. (W, is simply the annihilator of the tangent spaGgV,") at p.) A sub-bundlex of
T* x V1 is called aparallel bundleif

Wes=T"xV! (5.2)

the sum being understood in the sense thgtd X, = T*, as vector spacesyf, is the
fibre of T at p).

In terms of the coordinatep;, i = 1,2,3, of p = (po, p) € V;}, the tangent space
T,(V}) is spanned by the three vectors

0 1 i
i (p, ei> (5.3)
dpi  m \ po
wheree; = (1,0,0), e, = (0,1,0) andes = (0, 0, 1). We add to this set the vector
0 1
=710 (5.4)
dpo m

to make{a/ap,l}f;=O into a basis forT#*. Similarly, the cotangent spade (V) is spanned
by the covectors

dp;, =m (0, &) (5.5)
to which we add the covector
dpo = m (1, —p> (5.6)
Po
and obtain the dual basisip, }3_, for 7*:
d
dpu; 87]71; = Suv- (57)

Thus, the general tangent vectofs € 7,(V,;) and covectors(; € T,5(V,) are of the
form
q-p

3 3
0 s *
Xp,=m -E,l qi o = (170’ q) er? X,=m él gi dpi =m?©0,q) € T*. (5.8)

1

(Here ¢; is assumed to have the dimension of a length). Whénis equipped with the
Minkowski metricg (with diagonal elements, -1, —1, —1), T7,,(V,) becomes a space-like
hyperplane:
g - pI?
X, X, =XgX,=—5— -
Po

lql* <0 (5.9)
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with (Minkowski) normal vectomn = (1/m)(po, p):
n-X,=0=(dpo; X,). (5.10)
In other words, the pseudo-metrieg, of signature(3, 1), (with three positive and one

negative eigenvalues) ofi** restricts to a positive definite metric dfj,(V;}), for each

p € V. Furthermore, as a consequence of (5.10), the normal bidieseen to be

W = {(Adpo, p) € T* x VI |1 e R} W, = {Adpozmk (1,—p> =Ap|A ER}.
Po
(5.11)
Consequently, a possible choice for the parallel burkllis
E={X,, p e T x V| X, € T;(V;n*)} =T*VhH X, = T,;*(V,j). (5.12)
However, this is not the only possible choice for a parallel bundle, as we now demonstrate.
SinceB(p) in (3.11) satisfies (4.5), let us define the relativistic 4-velocity
1 n

o) = 00 np) o) == 18I P B, (5.13)
Then, by (3.10) the poin = (4o, @) € T* satisfies

n(p)-g=0 (5.14)

i.e. g lies on the space-like hyperplane with normal veet¢p), determined by3(p). Let
Z,’f denote this hyperplane. In particular, for t@alilean section

Bp) =By =0 o=00 T=%2={0.9)1qeR} =TV} (5.15)
while for the Lorentz section

A 1 R
B(p)=ﬁg(p)=% o =oy E,’?=Eﬁ={q€T4‘mP'CI=0} (5.16)

SO thatE,‘; is in fact isomorphic to the tangent spafgV,)) (see (5.10). Note that these
two sections are related by the duality of (3.12), B&(p) = 3,(p).
There is a natural isomorphisi, : 7% — T%, mappingT,(V,}) to T,(V,}) with
ad

Dp dpll = ﬁ M= O, 1, 2, 3. (517)
m

Similarly, there is an isomorphisi; : 7 — T4, mapping=? = 77 (V) to =} with
Ff0,q) =4 Ff(1,0) = (1, B(p) (5.18)
with g coming from (3.9):
1 Py
m
Ff = (5.19)
B I3+

Sincep = (po, —p) is a time-like vector,W, is a one-dimensional time-like subspace of
T4, and sinceE,/f is space-like, equation (5.18) implies tHal, © f = T4 Hence
2 ={(XF, p) e T x V] 1 X3F € £F) (5.20)

is a parallel bundle, which we call space-like parallel bundle In other words, eacls
determines @undle isomorphisn(X;;, p) — (FfX;ﬁ, p) = (X;ﬁ, p) between the parallel

p®9(p)f
m
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bundles: = T;(V,;;) and ©#. The corresponding affine sectian (see equation (3.9)),
maps the phase spafdn (3.1) too (I'), the latter being identifiable with the parallel bundle
%f. In particular, when3 = 3,, I' is identified with T;(V;[), while wheng = 3,, itis
identified with the parallel bundI&¢ which is isomorphic taT,, (V).

To sum up, each space-like affine sectiprdetermines a space-like parallel bundle,
identifiable with its range, and the coherent statgs ~(see equation (3.15)) may be
thought of as being labelled by the pomts of this bundle Each space-like parallel bundle
is determined by a map : V) — VI, u(p) = m{n(p)}, with w(p)/uo(p) = B(p) and
n(p) given by (5.13). The two extreme cases of this map arise when3,, giving rise
to the Galilean section, and its duydl= 3,, yielding the Lorentz section. In the first case,
u is the constant map(p) = (m,0), V p € VI, while in the secondy is the identity
map,u(p) = p, ¥V p € V. Physically, whero = oy, the phase spadé may be thought
of as consisting of all positions and momelrita p), of the particle of mass:, when it is
observed from a fixed laboratory frame. In the case whete o, I is to be identified
with the set of all space-time and momentum coordinédfe®) of the particle, where;
is observed from a frame which is moving with the velocityp/po, i.e. opposite to the
particle. A general sectioa identifies the phase space with the set of all space-time and
momentum coordinate§j, p), with g being observed from a frame moving, with respect
to the Iaboratory, with velocity-3(p).

The mapr in (5.19) equips the vector bundE* x V} with a pseudo-metric, the
restriction of which toT*(V}) c T* x V! vyields a positive definite metric on the fibres

m

T*(V*) Indeed, using equations (5.4), (5.8) and (5.18) we may rewrite (5.14) as
t ., O i 0

Hence, T*(V;) is the hyperplane irf* with normal vector(1, 0), with respect to the
pseudo-metricFﬁT(—g)Fﬁ. Let

a

RF = 3" (R Ve (5.22)
[LVZO g Pu 8[71)
where(R?),,, are the matrix elements of the operator
58 _ b 8
R, = FPT(_g)Fp
¥(p) @ p'
~1+ 1B@)|2 ~ P29 p) + B(p)! [Hs + ”}
m m
- ® 9(p)'!
~P09p) + |:H3 + ”p] B®) S(p. 9)
m m
expressed in th¢d/dp,}—{dp,} bases §(p, ) being as in (4.4))
(RE),., = dp],REdp,. (5.23)

In view of (5.18), when restricted t&® = 7(V,}), R, reduces toS(p, ), and thus
ﬁ,’f defines a positive definite metric on the cotangent burijé),;). Next write
(RD™ = (R}),,. Then

3
R =) (R)*dp, ®dp, (5.24)

w,v=0
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defines a pseudo-metric @if* x V. Also, it is clear thatR? restricts to a positive definite
metric on7 (V,)) and thereby equips,; with a Riemannian structureln fact, the restriction

of Rf to T,(V}) is againS(p, ¥). Comparing with (5.9), we see that the affine secton
determined by the 3-vector fiejd has the effect of changing the pseudo-metrig on T4

to R?, both having signaturé3, 1) and both being positive definite on the tangent space

T,V

6. Kinematic interpretation of the 3-duality

Let us try to get a more physical understanding of the- 3* duality in (3.11), (3.12).
From equations (5.13) and (5.14), we see that, Wittip)|| < 1, (¥ p), we can associate
with 3(p) the time-like 4-vector field:(p) = m{n(p)} which is normal to the space-like
hyperplanez,’? in T4. More generally, ifp — B(p) is a p-dependent 3-vector field, we
can associate with it a ray(p)] of p-dependent relativistic 4-vector fielddqp) in the
following way:

u(p) = (uo(p), u(p)) p = (po, P)
(6.1)
wp >0 P _ g
uo(p)

with u(p) - u(p) = uo(p)?> — |u(p)||?>. The 4-vectoru(p), and hence the rayu[p)] =

Rt {u(p)} is time-like, light-like or space-like according d8(p)| < 1, |8()|l = 1 or

IB()| > 1, respectively. Under a Lorentz transformatian u(p) — Au(p) and
u(p) Au(p)

A = o PP = Rt

Of course, such a transformation preserves the property liding time-like, light-like or
space-like, and hence of the equivalent propertiegdp)| being<, = or > 1. For any
u(p) € [u(p)], the 4-vector field

W (p) = Apu(p) (6.3)

depends orp only, (like u(p) itself). We callu*(p) the dual of the 4-vector fieldu(p).
Then

(6.2)

u*(p)
ugy(p)
and 3(p), B*(p) satisfy the duality relationship in (3.12). Taking the dot produc3gp)
with p on both sides of (3.12), using the explicit form f&} in (2.10), and rearranging,
we get the relation

(po—p-B®) (po—p - B D)) = m? (6.5)
which has an interesting physical interpretation, as we shall see in (6.20). Similarly, one
may verify the matrix relation

(mV, —p® BN MV, —p® B* D" = m’l3 (6.6)
which has a complementary physical interpretation (see (6.19). Note alsa/*{at is
time-like if u(p) is time-like and vice-versa. Hence

1B®@I <1 < [IBM®I<1. (6.7)

Physically, with each ordinary 3-vector velocify(p), u(p) associates a relativistic 4-
velocity n(p) (= u(p)/[u(p)-u(p)]2, if u(p)-u(p) # 0 and= u(p)/uo(p) if u(p)-u(p) =

u(p) = Apu*(p) u™(p) = u(p) B*(p) = (6.4)
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0), while 3*(p) is the velocity obtained by relativistically adding the 3-velocity(p) to
the 3-velocity associated with the boast.

Below are details of some particular space-like affine sections and a light-like limiting
section, all of which have interesting physical interpretations.

(1) The Galilean sectionyg

As noted in equation (5.15), for this section

Bp) =PBop) =0 Yp)=Do(p) =0  Bip) =L

) = . (6.8)
pPo m
Here, 8ol < 1, 185l <1, ¥ p.

(2) The Lorentz sectios,
This time (see equation (5.16))

B(p) = Be(p) = By(p) I(p) = 9¢(p) = 95(p) (6.9)
in other words, the Galilean and Lorentz sections are duals to each other.

(3) The symmetric sectian

This section is self-dual, being given by

Bp) =B, =B p) =T B(p) = 0,(p) = 9’ (p) = 2
m —+ po m + po

Again, |3,(p)|l <1, ¥V p. Note that in a sensg, lies half-waybetweensy ando,. Indeed,
writing

2 1 2 1
ne = (1,0) IH=QM+m},[ ]p) w="om  (611)

(6.10)

2m 2m(po + m)
we find that
ne =n, = Apng = Apn, n; = ng
i g plte plte s Zs (6.12)
A(mns) = AP ne = A(m’h)nf = A(mnx)ng

so that the velocity3, lies half-way betweer8, and 3,.

(4) The limiting sections

These sections are duals of each other and are both light-like, being given by

p i
_ =P == "
AR =Be® = PO == Gyl
] ol (6.13)
— 3* _ __ = 9_ =9 = TN . s
B =Bl =~ P = = o + el

In this limiting situation,||3,.(p)|l = IB_(p)| =1, V p.

We end this discussion by analysing the relationship between physical events observed
from reference frames attached to different sections. We identify the rest or laboratory
frame with the Galilean fram&,, i.e. we associate the laboratory with the Galilean section
oo. Similarly, to eachd we attach a frame& (understood pointwise, for eag), moving
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with velocity 8 = B(p) with respect tok,. In other words Ky is the frame attached to the
space-like affine sectiomg. In particular, to the Lorentz sectian we attach the reference
frame K,, moving with velocityp/po with respect to the Galilean frame. As before, let
u(p) = m{n(p)}, with n(p) the 4-velocity corresponding t8(p) (see equation (5.13)).
Then, following (2.9), the Lorentz transformation which booktsto Ky is

W 1<uo=<1—||ﬂ||2>% ul ) (6.14)
/3—% w m‘/u . .

Let (qg , q”) be the coordinates of an event when seen fr&igpn The corresponding
coordinates with respect t&, (see equation (2.14)) are

1 1
Ap(gh. q') = (m(MOCIO +u- qﬁ) . — (ugo+mV,q’)

m

= (45, 4°) (6.15)
while those with respect t&, are
(96, 4") = ApAp(ah. a°). (6.16)
Here
1 1 1
g5 = —(uopo — w - p)gh + —yuopo- " — =p- Vg, (6.17)
m m m
¢ 1 p_ 1 B B
q = —ﬁ(uop —mVyu)qy — ﬁuopu -q" +V,V,.q". (6.18)

Consider all events lying i’ i.e. all events for Whiclzyg = 0. Combining equation (6.15)
with (6.17) and (6.18) and applying (6.6) to get the inverse relation, we obtain

® 8 ® B
q" = (Vp _ PP )qg q¢ = (V,, _p®p )qf. (6.19)
m m

In particular, if 3 = 3,, the symmetric section, theqf andq® coincide. Thus the spatial
coordinates of an event localized to a space-like hyperpinef the symmetric section,
appear same when observed from the laboratory or the Lorentz frame. Similarly, if we
consider events for which? = 0, then as before we obtain (see equation (6.5))

1 1 .
a5 = ~(po—p- Bas a5 = —(po—p-B )q5- (6.20)

Once again, considering the symmetric section, the temporal coordinates of an event taking
place at the spatial origin of a space-like hyperplaije appear same when observed from

the laboratory or the Lorentz frame. These two sets of relations point up yet another aspect
of the 3 — 3*-duality.

Finally, it is tempting to speculate on the meaning of certain pseudo-differential
equations arising from the quantized versions of the two relations (6.5) and (6.6). Making
the replacemenp; — —id/dq;, j =1,2,3, turspg — p - B(p) into a pseudo-differential
operator andnV, — p ® B(p)! into a matrix pseudo-differential operator. Let

—p- of
D— < po—p-B(p) ) 6.21)
0 mV, —p ® B(p)!
—p-.3* of
D. = ( po—p- B (p) ) 6.22)
0 mV, —p® B3*(p)’
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both considered as matrix pseudo-differential operatorg, lindvr; are each 4-component
wavefunctions, relations (6.5) and (6.6) together give rise to the 8 matrix pseudo-
differential equation

()

or equivalently
DD,y = m*yo and DDy = m?yy. (6.24)

It would be interesting to investigate, both physically and mathematically, the meaning of
these Dirac-type equations.

7. Spins frames and coherent states

From now on, unless otherwise stated, we shall work with space-like affine seetjons
actually the only exceptions will be the two limiting sectioss in (6.13). Thus we shall
assume that the conditions of proposition 4.1 hold.

Going back to the computation @f, ,, in (3.21), we note that thegdintegration yields
a §-measure inX, and hence, making the change of variabtes> X, integrating and
rearranging (using equation (4.1)) we obtain

Loy = /V oW A (k. (k)

‘m X Vin

dp dk
Po ko
where 4, (k, p) is the (2s + 1) x (25 + 1)-matrix kernel

2s+1 1
Ak, py = @0°m Y [po+p-ptk = A2p) B (~ap)]
i=1

(7.1)

xD*(w(k, A p) m' (p(A ) ok — At p)p)

x1)' (0 (A p) otk — A p)p) D (wik, Ayt p)) (7.2)
where p(p), p(k — p) and v(k, p) are given by equations (3.17), (4.2) and (3.20),
respectively. Assuming the integral (3.16) to exist for@lkp € $j,, let us write

d
Ay (k) = / Ay k. p) 2. (7.3)
Vi Po
Then the operatos, in (3.14) is a matrix-valued multiplication operator:
(A @) (k) = A; (k) (k) ¢ € Oy (7.4)

At this point we make two simplifying assumptions on the nature of the vectors
neny, i=12...,2+1

(i) Assumption of rotational invariance of the operafo?t* ') (1’|, i.e. ¥ R € SU(2)
25+1 ] 2s+1

D*(R) [Z Y@ DR =D In' ). (7.5)
i=1 i=1
This implies that

25+1 ) )
(Z |n’)<n’|>(k) = vy (k)2 (7.6)

i=1
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wheren e L2(V;, dk/ ko), and thus we may simply take faf < 5y the vectors
n=609n i=12...,25+1 (7.7)

the &; being the canonical unit vectors @**! (i.e. & = (8;;), j =1,2,..., 25 + 1).
(i) Assumption of rotational invariance af(k)|? in (7.6):

In(pk)|? = In(k)[? Y peSOM). (7.8)

We shall generally refer to these two assumptions asagsimption of rotational
invariance With this, the kerneld, (k, p) in (7.2) simplifies to

Aq(k, p) = aq (k, p) In(p)| Tas 11

(27)%m (7.9)
po+p-pk — Atp)t B* (—A;lp) '
On %j, define the operator&Py, P)

(Pu@) (k) =k, (k). (7.10)

We shall also denote the analogous operator&@aw;’, dk/ ko) by the same symboIsP(;1
is a bounded operator with spectrum fg With the above simplifications (7.3) becomes

Aq (k) = (ao (k, P))y I2511 (7.11)

where (-), denotes theL2(V;", dk/ko) expectation value with respect to the vectpin
(7.6). Hence for the operatot, (see equation (7.4))

|Asll = sup|{as (k, P)),l (7.12)
keV,;

aa(kv P) =

provided this supremum exists. On the other hand, simé(—Ak‘lp) I < 1 and
otk — A tp)T| = 1, from (7.9) we get

(po+lp)- (7.13)

1
@n)om (po—lipl) < wk. p) ~ @rem

The two extreme values in the above inequality are actually reached for the limiting sections
o+ (see (6.10)). Thus, we have the following result.

Lemma 7.1If |B(p)| <1, V p, thena,(k, p) is a bounded function satisfying

27.[ 3 2 3
) po— Ipl) < ok, p) < 27
m m

(po+ llp. (7.14)
Suppose now thai lies in the domain ofP%, ie.

/ In(k)|? dk < oo (7.15)
Vi
and set
2 dp
(P |IPI), = (po x IpDIn(p)I %- (7.16)
Vi

Then equations (7.1), (7.9) and (7.14) together imply the following.
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Lemma 7.2If the assumption of rotational invariance o, i = 1,2,...,2s + 1 is
1
satisfied, and ify € Dom(Py), then for all3 such that|B(p)| <1, Vp

(2n)® (2n)®

Po— | P <yl <
- (Po = 1P}y @l 191 < [l ”

(Po+ 1Py Nl 191l (7.17)

As a consequence of this lemma we see that both the ope#gton (3.14) and its
inverse, A1, are bounded, with

(A7) (k) = [(a, (k, P)),]1 (k) é € 9. (7.18)

Indeed, collecting all these results we obtain the following.

Proposition 7.3.Letn’, i =1,2,..., 25+ 1, satisfy the condition of rotational invariance.
Then for each3 satisfying||3(p)|| < 1, V p, the set of vector$, in (3.15) is a family
of spins cohegent states, forming a raiiRs + 1) frame}"{nf,(q,p), A, 2s + 1}, if and only

if n € Dom(P{). The operatord,, acts via multiplication by a bounded invertible function
A, (k) given by (7.11) and4; ! via multiplication by the function4; (k). Moreover

27)3 27)3
O py— 1P, < 140 < 27

(Pot+1IPl), (7.19)

and

SpectruniA,) C [(Po =P}y, (Po+ I1PI)y] - (7.20)

(2m)3

m
Note that since we are assuming rotational invariance, we could just as well have done

without the restrictionR(q, p) = R(p), in defining the sections in (3.9). The following

construction now emerges for building spincoherent states for the representati@rjs

(see (2.6)) of mass > 0 ands =0, 3,1, 3,2, ..., of P](L, 3):

(i) Choose a functior3 : R® — RS2, such that||3(p)|| < 1, V p, or equivalently, a map

u Vi — VYVt asin (6.1); choose an arbitrary measurable funconR® — SU(2) and

construct the corresponding affine space-like (or in the limit, the affine light-like) section

o, using equations (3.9)—(3.11).

(i) Choose am € L2V, dk/ ko), satisfying equations (7.8) and (7.15) and form the vectors

n', i=12...,2s + 1, using equation (7.7).

(iii) Construct the family,&,, of coherent stateﬁ;’p) using equation (3.14).

While this procedure provides us with a large class of CS and frames, the latter are
generally not tight, i.eA, is not, in general, a multiple of the identity. A few special
cases worked out below will make this statement clearer. For computational purposes, the
following expressions prove useful (assuming rotational invariance):

21)3m(A; T
ay (k, p) = 1( yomt "lp)o - (7.21)
mko — [ko (A,j p) + k(AL p)o] -ﬂ(—A; p)
and
Ipw = (20)° / b(k)! " A2 dp L (7.22)
o Vi XV mko — (kop + kpo) - 9(—p) P o '
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(1) The Galilean sectiong

From equations (6.8) and (7.21)

21)3 k —k-
a (K, p) = aolk, p) = )" Kopo kP (7.23)
n ko

and using the rotational invariance lof(k)|?
(27)3

Ay (k) = Ag(k) = (Po)y Togya. (7.24)

Hence
3

A, = Ag= PP (Po)y 1 (7.25)
so that the frame is tight.
(2) The Lorentz sectios,
From equations (6.9) and (7.9)

27 3

ar (k. p) = aglh, p) = 20 (7.26)
so that

A, (k) = Ag(k) = (21)3m(Py ), Togi1. (7.27)
Thus

Ay = Ap = )3 m(Py Y, I (7.28)
and once again the frame is tight.
(3) The symmetric sectian
From equations (6.10) and (7.22)

+ kopo +m? dp dk

I =2713/ k)t ——= 2 (k) — —. 7.29

pap = (27) s o (k) m(k0+p0)|77(17)| P (k) o ko (7.29)
Thus

4ok, p) = asth. p) = 2)? KoPOEM (7.30)

o o m(ko + po) '
and

koPo + m?
Ay (k) = As(k) = (2 3<>1[. . 7.31
(k) (k) = (2m) m(ko+Po)n2A+l ( )
The operatord, = A, is now given by
koPo + m? >

A, ) (k) = Ak k) = 27)3( ———— k 7.32
(As ) (k) s(k)p(k) = (2m) <m(ko+Po),7¢() ¢ € Hy ( )

To determine the spectrum df;, note that the functiory : [m, co) — R*, defined by

kopo + m?

_ 3
f (ko) = (2mr) kot po)

(7.33)
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is uniformly bounded for allpy € [m, c], for any finite c > m. Also, f’'(ko) # O, for
all ko, po > m and, f(m) = (27),  f(oc0) = (21)*po/m. Thus, (27)* < f(ko) <
(21)3 po/m, which, by virtue of (7.31), implies that

P
Spectrunia,) = (27)° [Ilnllz, “””} . (7.34)
m
Hence, in this case, the frame is never tight.

We end by proving the stability of the class of affine sections under the action of
7?1(1, 3. Ifo : T — 731(1, 3) is any section then, as shown in [4], for arbitrary
(a, A) € Pi(l, 3), 0. 4) IS again a section where

0w.n(q. p) = (a, Ao ((a, A (q. p)) = o (g, p) h((a, A), (a, A)"'(q,p)) (7.35)
(a, A)~1(qg, p) being the translation ofg, p) by (a, A)~* under the action (3.5) and

h((a, A), (a, A)"g,p)) = 0(g, p) (a, A)a((a, A) g, p) € T x SU?).

Moreover, if o defines the frame”-‘{ng(q’p), Ao, 2s + 1}, then o, 4, defines the frame
f{nf,w)(q,p), Ay s 25 + 1}, whereA,, , = U(a, A)A,U(a, A)*. Let2 denote the class

of all affine space-like sections, defined by (3.8) — (3.10) and satisfying the conditions of
proposition 4.1, but witlp not necessarily assumed to be zero. Then:

Proposition 7.4.If o € A theno, 4 € A, for all (a, A) € 731(1, 3).

In view of this result (the proof is given in the appendix), starting with any family of
coherent state§,,, we may generate an entire class of covariantly translated fargilies,
of other coherent states, using the natural action (7.35)105&, 3) on the space of sections.
If o is characterized by andg, theno, ) is characterized by’ and¢’, the relationship
between them being given by (A.7) below.

8. Some specific applications

Coherent states enable us to view states and observables of quantum mechanical systems
in a very special manner. For instance, if we consider the hydrogen atom, we can
transcribe its continuum and bound state wavefunctions, dipole operators, etc., in terms
of an overcomplete basis consisting of Galilean CS built up as:

(rlg, p) = (U(cm(q, p) > Sn,e,m)@o, r)
n,t,m

where thesS, ,..(po, ) are the so-called Sturmian functions [15]. The Sturmians form a
complete discrete basis set in the Hilbert space. The statgsp) are especially adapted
to computations of, for example, matrix elements of multi-photon processes in the Galilean
regime [12], [17]. The same holds true in the intermediate relativistic regime, where the
Dirac or the Feynman—Gell-Mann equation, with external field, remains valid for describing
the interaction of a charged sp@particle with the electromagnetic field (and where a full
QED model is not warranted). For recent work in atomic physics in this direction, see, e.g.,
[18]. The spin-Sturmian functions for the Feynman—Gell-Mann equation were obtained in
[8]. These wavefunctions can be used to build relativistic CS in the spirit of the present

paper:
(rlg. p. s) = (U;‘V(o(q, Yy S;,@,,,,)(po, ).

n,t,m
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The freedom in the choice of available sections, in building the coherent states, can now
be exploited, in addition to the freedom which already exists in the choice of the Sturmian
probe. The various sectioms discussed in this paper, also have applications to relativistic
statistical mechanics in the computation of distribution functions [11].

Appendix

Derivation of equation (4.1)

Rewriting (4.2) aso(k — ﬁ)AkAljl = A;lAk, and acting on the vectaym, 0) with both
sides of this equation we obtain

ptk = P)Ap = Ak (A1)
Next, by equation (3.13),

1 1
kot~ (kop — kpo) - 9@) =ko+  (kop —kpo) - (£~ v,8° ) .
m m m
Using the explicit form ofV, from (2.10) and simplifying we get

1 k
ko + — (kop — kpo) - 9(p) = ”—Zk p-° [Op - Vpk?] - B*(p)
m m m m

= 2 [(aupro+ (Agk) - 8'p)]

by virtue of (2.14). From this equation (4.1) follows directly upon using (A.1).

Proof of proposition 4.1

We start with (i). The condition rewritten dsy||*> — |4o|? > 0, implies by (3.10) and (3.11)
thatq - S(p,9)q > 0, ¥V q € R®, q # 0, which is equivalent to (ii). The equivalence of
() and (ii) follows directly from (3.10), while the equivalence of (iii)) and (iv) has been
established in (6.7). |

Proof of proposition 4.2

Suppose thaf is space-like. Then by proposition 4.13*| < 1. Hence, since(k — p)
in (4.1) is a rotation matrix

H (Axp)
(AxPo

i.e. det[7x (k)] > 0 (by equation (4.1)).
Conversely, assume that d€i (k)] > 0. Then by equation (3.23)

(Axp)
(AxPlo

pk—>PigE| <1 = 1+ pk = P)'B*(p) > 0

p - 9(p) >@E.,9(p),

1
+ m m kg

Taking k in the direction ofd(p) and letting| k|| — oo, the above inequality implies that

-9
14 P0®) o)
m m

which, in view of condition (iii) of proposition 4.1, implies thatis space-like. O
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Proof of proposition 7.4

If ¢ is included in the definition of the section, it is easily checked that

1
=" +9p -9 G=Le@+q+ -pd®-q (A2
m m m
From this it follows that
do=20@ + 8@ - @-Pow) = np-i="2"Pyp (A3)
m m m

with n(p) given by (5.13). Next, writeA = Ayp, Where p is a rotation. Then
At = A, p7', so that writing (¢'.p") = (a.A)"(g.p) in (7.35), we get (see
equation (3.5))

ap _ B _
q=-"p k+p V(g —a) pP=A"p (A.4)

with V; as in (2.10).
Thus, ifo is the affine section corresponding to the quantileand ¢, and(g’, p’) =
o(q,p), then

n(ph-q = n(p#w(p’l (A5)

Let
q@". h(p)) = (a, Ao (q,p) = (a, A)(G', h(p") = (a + AG', h(p))
andn’(p) = An(p). Clearly, 3’ = An/(An), satisfies|3'|| < 1 if |3]| < 1. Furthermore
n'(p)-q" =n'(p)-(a+ Ag)

/ . . -1
_np-p [n(p) (mA™"a + </)(P)P)} ‘ (A6)
m n'(p) - p
Thus,o,.4)(q, p) is again an affine section corresponding to the quantBiesnd¢’, with
: An(p) , n(p) - (mA ta+9®)p)
= — = . A.7
IO = e P W) p A1
[l

References

[1] Abraham R and MarsdeJ E 1978 oundations of Mechanickeading, MA: Benjamin/ Cummings) 2nd edn

[2] Ali S T 1979 On some representations of the Poigcgiroup on phase spadeMath. Phys20 1385-91

[3] Ali S T, Antoine J-P and Gazeau J-P 1991 Square integrability of group representations on homogeneous
spaces. |. Reproducing triples and framfem. Inst. H. Poincag’55 829-55

[4] Ali S T, Antoine J-P and Gazeau J-P 1991 Square integrability of group representations on homogeneous
spaces. Il. Coherent and quasi-coherent states. The case of the @grmgsAnn. Inst. H. Poincag’55
857-90

[5] Ali ST, Antoine J-P and Gazeau J-P 1993 Relativistic quantum fradmes Phys., NY222 38-88

[6] Ali S T, Antoine J-P, Gazeau J-P and Muell® A 1995 Coherent states and their generalizations: A
mathematical overviewRev. Math. Phys7 1013-104

[7] Ali ST and Prugoveéki E 1986 Harmonic analysis and systems of covariance for phase space representation
of the Poincag groupActa Appl. Math.6 47-62

[8] Bretin C and Gazeau J-P 1982 A Coulomb Sturmian basis for anyPipysicall4A 428-32

[9] De Bievre S 1989 Coherent states over symplectic homogeneous shadath. Phys30 1401-7

[10] Gazeau J-P 1990 Coherent states for De Sitterian and Einsteinian relatBéfiested Topics in Quantum

Field Theory and Mathematical Physiexl J Niederle and J Fischer (Singapore: World Scientific)



(1]

[12]
[13]

[14]

[15]

[16]

[17]
[18]

[19]

Frames and spin coherent states 5549

Gazeau J-P and Graffi S Quantum harmonic oscillator: A relativistic and statistical point oBuailstino
della Unione Matematica Italianao appear

Maquet A 1977 Use of the Coulomb Green function in atomic calculatRins. RevA 15 1088-108

Prugovéki E 1978 Relativistic quantum kinematics on stochastic phase space for massive parfitéth.
Phys.19 2261-70

Prugovéki E 1980 Dirac dynamics on stochastic phase spaces for%sn:iarticlesRep. Math. Phys17
401-17

Rotenberg M 1962 Application of Sturmian functions to the ®dimger three-body problem: Elasti¢€eH
scatteringAnn. Phys., NY19 262-78; 1970 Theory and application of Sturmian functidwatvances in
Atomic and Molecular Physicgol 6, ed R D Bates and | Estermann (New York: Academic) pp 233-68

Rowe D J, Rosensteel G and Gilmore R 1985 Vector coherent state representationJtidatly. Phys26
2787-91

SakuraJ J 1985Modern Quantum Mechanio®Rkeading, MA: Addison-Wesley)

Swainsm R A and Drale G W F1991 A unified treatment of non-relativistic and relativistic hydrogen atom |[;
II; Il J. Phys. A: Math. Ger24 79-94; 95-120; 1801-24

Woodhous N J M 1992 Geometric QuantizatiorfOxford: Clarendon) 2nd edn



