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Abstract. In the spirit of some earlier work on building coherent states for the Poincaré group
in one space and one time dimension, we construct here analogous families of states for the
full Poincaŕe group, for representations corresponding to massm > 0 and arbitrary integral or
half-integral spin. Each family of coherent states is defined by an affine section in the group
and constitutes a frame. The sections, in their turn, are determined by particular velocity vector
fields, the latter always appearing in dual pairs. Geometrically, each family of coherent states is
related to the choice of a Riemannian structure on the forward mass hyperboloid or, equivalently,
to the choice of a certain parallel bundle in the relativistic phase space. The large variety of
coherent states obtained tempts us to believe that there is rich scope here for application to spin-
dependent problems in atomic and nuclear physics, as well as to image reconstruction problems,
using the discretized versions of these frames.

1. Introduction

Following some earlier work [3, 4],coherent states(CS) will be associated in this paper with
particular types ofsquare integrablerepresentations of groups (see also [6] for a general
review of the theory). Specifically, letG be a locally compact group andg 7→ U(g) a
unitary, irreducible representation (UIR) ofG on the (complex, separable) Hilbert spaceH.
Let H ⊂ G be a closed subgroup,X = G/H the left coset space, which will be assumed
to carry theinvariant measureν (under the natural action ofG onX). Suppose that there
exists a (finite) set of vectorsηi, i = 1, 2, . . . , n, in H and a Borel sectionσ : X → G,
such that

n∑
i=1

∫
X

|ηiσ(x)〉〈ηiσ(x)| dν(x) = A ηiσ(x) = U(σ(x))ηi (1.1)

whereA is a bounded positive operator onH, with a densely defined inverse. The integral
in (1.1) is assumed to converge weakly. We then say that the representationU is square
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integrablemod(H, σ ), and call the set of vectors

S = {ηiσ(x) | x ∈ X, i = 1, 2, . . . , n} ⊂ H (1.2)

a family of covariant coherent states(CS for short), for the representationU . If it so happens
thatA−1 is also a bounded operator, then we say that the family of CS,S, forms arank-n
frame, denotedF{ηiσ(x), A, n}. If A is a multiple of the identity operatorI on H, we say
that the frame istight. In this case, by appropriately normalizing theηi we may actually
makeA = I , and then (1.1) is said to generate aresolution of the identity.

Covariant CS for the Poincaré groupP↑
+(1, 1), in one space and one time dimension,

for UIRs corresponding to massm > 0, have been studied exhaustively in [4, 5]. These
states are labelled by points of the homogeneous space,0 = P↑

+(1, 1)/T (T = time
translation subgroup), and each family of CS is associated with a certainaffine section
σ : 0 → P↑

+(1, 1). The set of all affine sections itself enjoys interesting mathematical
properties, including a type ofduality, which groups members of the set into pairs. In
particular, there exists asymmetricsection which is self-dual. The full Poincaré group
P↑

+(1, 3) had been studied earlier, and a special class of CS was obtained in [7, 13]. These
CS were built out of UIRs corresponding to massm > 0 and spins = 0, 1, 2, . . . . In the
context of theP↑

+(1, 1) CS, these other CS forP↑
+(1, 3), were all related to one particular

section,σ = σ0, the Galilean section. Some early results on constructing CS for the spin-1
2,

m > 0 representation ofP↑
+(1, 3) were reported in [14]. Because of the particular choice

of the measure on the phase space0, used in that paper, the resulting CS did not constitute
a frame, and hence could not generate a resolution of the identity. Nevertheless, the results
obtained there show how bispinor (or Dirac) type CS may be constructed, allowing one,
among other things, to arrive at a Dirac equation on the phase space. Coherent states for
the De Sitter and Poincaré groups, arising from particular sections were also studied in [10].

The present paper extends the results in [4, 5] for theP↑
+(1, 1) CS, to any UIR of

P↑
+(1, 3), for m > 0 ands = 0, 1

2, 1, 3
2, . . . . Just as in theP↑

+(1, 1) situation, each family
of CS is associated with a particular affine section, and one always obtains a frame in this
manner. The final result is enunciated in proposition 7.3. Moreover, for specific situations,
the frame can be made tight, thus leading to a resolution of the identity. Since the base
space, on which the sections are now defined, is much larger than in theP↑

+(1, 1) case,
the full significance of the duality mentioned above becomes clear. Each affine section is
characterized by a 4-vector fieldu(p) = (u0(p),u(p)), (p is a relativistic 4-momentum on
the mass shell), which maps the forward mass hyperboloidV+

m to itself. Thedual section, is
then characterized by the 4-vector fieldu∗(p), obtained by applying the Lorentz boost3p
to u(p) = (u0(p),−u(p)), pointwise for allp. Furthermore, each section is seen to define
a Riemannian structureon the forward mass hyperboloidV+

m , considered as a manifold.
This Riemannian structure is, in its turn, the restriction to the tangent bundle ofV+

m of a
pseudo-Riemannian metric of signature(3, 1) on an ambient vector bundle, which is also a
homogeneous space ofP↑

+(1, 3). It turns out that we have an illustration here of the use of
parallel bundles, in the sense of [9], for constructing CS.

The result is that obtain a wide class of families of CS for the Poincaré group, for
arbitrary spin. The richness in their variety tempts us to believe that they would prove
useful in studies of spin related effects in atomic or nuclear physics, as well as in more
theoretical studies on quantization of systems with internal degrees of freedom. It ought to
be pointed out that the CS obtained in this paper are similar to the vector CS studied in
[16]. However, the situation envisaged here is more general than that in [16], since in our
case, the subspace generated by the ‘fiducial vectors’ is not stable under the action of any
non-trivial subgroup ofP↑

+(1, 3).
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2. Notational conventions

By the full Poincaŕe group we mean the 2-fold covering group,P↑
+(1, 3) = T 4 � SL(2,C),

whereT 4 ' R1,3 is the group of space-time translations. Elements ofP↑
+(1, 3) will be

denoted by(a,A), with a = (a0,a) ∈ R1,3, A ∈ SL(2,C). The multiplication law is
(a,A)(a′, A′) = (a + 3a′, AA′), where3 ∈ L↑

+(1, 3) (the proper, orthochronous Lorentz
group) is the Lorentz transformation corresponding toA:

3µ
ν = 1

2 Tr[AσνA
†σµ] µ, ν = 0, 1, 2, 3 (2.1)

σ 1 = σx, σ
2 = σy andσ 3 = σz are the Pauli matrices,σ 0 = I2, and the metric tensor is

g00 = 1 = −g11 = −g22 = −g33. Let

V+
m = {k = (k0,k) ∈ R1,3 | k2 = k2

0 − k2 = m2} (2.2)

be theforward mass hyperboloid(we takec = h̄ = 1). Then

k′ = 3k ⇒ σ · k′ = Aσ · kA† (2.3)

with σ · k = σµkµ = k0I2 − k · σ, σ = (σx, σy, σz).
In the Wigner realization, the unitary, irreducible representationUs

W of P↑
+(1, 3) for a

particle of massm > 0 and spins = 0, 1
2, 1, 3

2, 2, . . ., is carried by the Hilbert space

Hs
W = C2s+1 ⊗ L2

(
V+
m,

dk

k0

)
(2.4)

of C2s+1-valued functionsφ on V+
m , which are square integrable:∫

V+
m

φ(k)†φ(k)
dk

k0
= ‖φ‖2 = 〈φ|φ〉 < ∞ . (2.5)

Explicitly

(Us
W (a,A)φ)(k) = eik·a Ds(h(k)−1Ah(3−1k))φ(3−1k) k · a = k0a0 − k · a (2.6)

whereDs is the (2s + 1)-dimensional irreducible spinor representation ofSU(2) (carried
by C2s+1) and

k → h(k) = mI2 + σ · k√
2m(k0 +m)

(k = (k0,−k)) (2.7)

is the image inSL(2,C) of the Lorentz boost3k, which brings the 4-vector(m, 0) to the
4-vectork in V+

m :

3k(m, 0) = k ⇔ h(k)mI2 h(k) = m[h(k)]2

= σ · k =
(
k0 + kz kx − iky

kx + iky k0 − kz

)
. (2.8)

The matrix form of the Lorentz boost is

3k = 1

m

(
k0 k†

k mVk

)
= 3k

† (2.9)

whereVk is the 3× 3 symmetric matrix

Vk = I3 + k ⊗ k†

m(k0 +m)
= Vk

† = Vk . (2.10)
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The following properties of3k andVk are useful for computational purposes and are easily
verified:

(i) det3k = 1; 3k has the spectrum

Sp(3k) =
{

1

m
(k0 ± ‖k‖), 1, 1

}
⇒ ‖3k‖ = 1

m
(k0 + ‖k‖) . (2.11)

(ii) The matrixVk has the properties

detVk = k0

m
‖Vk‖ = k0

m
‖V −1

k ‖ = 1 (2.12)

V −1
k = V −1

k
= Vk − k ⊗ k†

mk0
. (2.13)

Furthermore

(3kp)0 = 1

m
(k0p0 + k · p) = k · p

m
(3kp) = 1

m
kp0 + Vkp (2.14)

the underline denoting the spatial part of a 4-vector, while

k0(3kp)− k(3kp)0 = k0V
−1
k p (2.15)

from which it follows that∥∥∥k0(3kp)− k(3kp)0

∥∥∥ 6 k0‖p‖. (2.16)

Also, since3−1
k = 3k, we have,h(k)−1 = h(k).

3. Coherent states for massive, spin-s particles on the phase space

A classical (spinless), relativistic particle has a phase space which can be identified with

0 = P↑
+(1, 3)/(T × SU(2)) (3.1)

where T denotes the subgroup of time translations. For a particle with non-zero spin
(treated as an additional classical degree of freedom), a geometric quantization programme
[19] would normally start with the phase space0′ = P↑

+(1, 3)/T ×SO(2). However, since
geometric quantization is not our objective here, we choose0 in (3.1) as the phase space for
a particle with arbitrary spins. (In the terminology of geometric quantization, this means
working on aC2s+1-bundle, rather than on a line bundle.) ForA ∈ SL(2,C), let

A = h(k)R(k) R(k) ∈ SU(2) (3.2)

be its Cartan decomposition. An arbitrary element(a,A) ∈ P↑
+(1, 3) has the left coset

decomposition

(a,A) =
((

0,a− a0k

k0

)
, h(k)

) ((
ma0

k0
, 0

)
, R(k)

)
(3.3)

according to (3.1). Thus, the elements in0 have the global coordinatization,(q,p) ∈ R6:

q = a− a0k

k0
p = k. (3.4)
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In terms of these variables, the action ofP↑
+(1, 3) on 0 is given by(q,p) 7→ (q′,p′) =

(a,A)(q,p)

q′ = 1

p′
0

(
p′

0[a+3(0, q)] − p′[a0 + {3(0, q)}0]
)

p′ = 3p p = (
√
m2 + p2, p)

(3.5)

where3 ∈ L↑
+(1, 3) is related toA by (2.1), andp′

0 = (3p)0. It can be shown [2] that the
measure dqdp is invariant under this action, and hence represents the invariant measureν

on 0, in the variables(q,p).
Next, in terms of these variables let us define the basic section

σ0 : 0 → P↑
+(1, 3) with σ0(q,p) = ((0, q), h(p)) (3.6)

which we call theGalilean section. Any other sectionσ : 0 → P↑
+(1, 3) is then related to

σ0 in the manner

σ(q,p) = σ0(q,p) ((f (q,p), 0), R(q,p)) (3.7)

wheref : R6 → R andR : R6 → SU(2) are smooth functions. As in the case ofP↑
+(1, 1),

we work again withaffine sections, for which the functionf is of the form

f (q,p) = ϕ(p)+ q · ϑ(p) (3.8)

whereϕ : R3 → R, ϑ : R3 → R3 are smooth functions ofp alone. Again, it can be shown
that as far as the construction of CS is concerned,ϕ only introduces an inessential phase.
Hence, we setϕ = 0. Moreover, we also impose the restriction thatR(q,p) = R(p) be a
function ofp alone. Writing

σ(q,p) = (q̂, h(p)R(p)) q̂ = (q̂0, q̂) ∈ R1,3 (3.9)

we see that

q̂0 = β(p) · q̂ (3.10)

whereβ is the 3-vector field

β(p) = p0ϑ(p)

m+ p · ϑ(p) so that ϑ(p) = mβ(p)

p0 − p · β(p) . (3.11)

Let us also introduce thedual vector fieldβ∗

β∗(p) = p−mVpβ(p)

p0 − p · β(p) , (3.12)

whereVp is the matrix defined in (2.10). The significance of this dual quantity will shortly
become clear. First note that

β∗∗ = β and ϑ(p) = 1

m
[p−mVpβ

∗(p)]. (3.13)

We now take an arbitrary affine sectionσ , and going back to the Hilbert spaceHs
W in

(2.4) choose a set of vectorsηi , i = 1, 2, . . . ,2s + 1, in it to define the formal operator
(see equations (1.1) and (2.6)):

Aσ =
2s+1∑
i=1

∫
R6

|ηiσ (q,p)〉〈ηiσ (q,p)| dq dp ηiσ (q,p) = Us
W(σ(q,p))η

i . (3.14)

From the general definition, in order for the set of vectors

Sσ = {ηiσ (q,p) | (q,p) ∈ R6, i = 1, 2, . . . ,2s + 1} ⊂ Hs
W (3.15)
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to constitute a family of coherent states for the representationUs
W , the integral in (3.14)

must converge weakly, and defineAσ as a bounded operator with inverse. In fact, it will
be possible to choose vectorsηi such that for each affine sectionσ , bothAσ andA−1

σ are
bounded, i.e. each family of CS,Sσ , will define a rank-(2s + 1) frame.

To study the convergence properties of the operator integral in (3.14) we have to
determine the convergence of the ordinary integral

Iφ,ψ =
2s+1∑
i=1

∫
R6

〈φ|ηiσ (q,p)〉〈ηiσ (q,p)|ψ〉 dq dp (3.16)

for arbitraryφ,ψ ∈ Hs
W . In (3.9) set

Â(p) = h(p)R(p) and 3̂(p) = 3pρ(p) (3.17)

where3̂(p) andρ(p) are the matrices in the Lorentz groupL↑
+(1, 3) which correspond to

Â(p) andR(p), respectively. Then

ηiσ (q,p)(k) = exp{−iX(k) · q} Ds(v(k, p))ηi (3̂(p)
−1
k) (3.18)

where

X(k) = k − k · p
m
ϑ(p) (3.19)

and

v(k, p) = h(k)−1Â(p)h(3̂(p)−1k) ∈ SU(2). (3.20)

Substituting into (3.16) yields

Iφ,ψ =
2s+1∑
i=1

∫
R6×V+

m×V+
m

exp{−i[X(k)−X(k′)] · q}φ(k)†Ds(v(k, p))

×ηi (3̂(p)−1
k)ηi (3̂(p)

−1
k′)†Ds(v(k′, p))†ψ(k′)

dk

k0

dk′

k′
0

dq dp. (3.21)

In order to perform thek, k′ integrations in (3.21), we need to change variables:k → X(k).
Computing the JacobianJX(k) of this transformation from (3.19) we obtain

JX(k) =
(
∂Xi

∂kj
(k)

)
= I3 + 1

mk0
ϑ(p)⊗ [k0p− kp0]† (3.22)

which has the determinant

det[JX(k)] = 1 + 1

mk0
ϑ(p) · [k0p− kp0]. (3.23)

Since atk = p = 0, det[JX(k)] = 1, and since in order to change variables we need
det[JX(k)] 6= 0, we must impose the condition that

det[JX(k)] > 0 ∀ (k,p). (3.24)

This, in turn, imposes restrictions onϑ, and hence on the 4-vectorq̂ = (q̂0, q̂) in (3.9),
which we proceed to study next.
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4. Theβ-duality and space-like sections

Rewriting (3.23) in terms ofβ∗ (see the appendix)

det[JX(k)] = p0(3kp)0

mk0

[
1 + (3kp)

(3kp)0
· ρ(k → p)†β∗(p)

]
(4.1)

whereρ(k → p) is the rotation matrix

ρ(k → p) = 3−1
p 3k3p3

−1
k . (4.2)

Thus, the positivity of det[JX(k)], as required by (3.24), would be ensured if the
second term within the square brackets in (4.1) did not exceed 1 in magnitude, i.e. if
‖β∗(p)‖ < 1, ∀ p. This is made precise in the following proposition (we give the proof in
the appendix).

Proposition 4.1.The following conditions are equivalent:
(i) The 4-vectorq̂ = (q̂0, q̂) is space-like, i.e.

|q̂0|2 − ‖q̂‖2 < 0. (4.3)

(ii) The matrix

S(p,ϑ) = I3 +
[
ϑ⊗

(
p

m
− ϑ

2

)†
+

(
p

m
− ϑ

2

)
⊗ ϑ†

]
(4.4)

is positive definite for allp ∈ V+
m .

(iii) For all p ∈ R3, the 3-vector fieldβ obeys

‖β(p)‖ < 1. (4.5)

(iv) For all p ∈ R3, the 3-vector fieldβ∗ obeys

‖β∗(p)‖ < 1. (4.6)

Consequently, we have the next result (again, we give the proof in the appendix).

Proposition 4.2.The condition (3.24), det[JX(k)] > 0, holds for allk, p ∈ R3 if and
only if the 4-vectorq̂ = (q̂0, q̂) is space-like, i.e. if and only if any one of the equivalent
conditions in proposition 4.1 is satisfied.

An affine sectionσ , for which the corresponding 3-vectorϑ or β satisfies any one of
the equivalent conditions of proposition 4.1 will be called aspace-like affine section. We
could now go back to (3.21) and, assuming proposition 4.1 to hold, carry out the change of
variables to get estimates on|Iφ,ψ|, thereby arriving at conditions under which (3.14) would
define a bounded invertible operatorAσ . This would ensure that (3.15) does indeed define a
family of CS for the representationUs

W of P↑
+(1, 3). However, let us first analyse, in some

detail, the geometry of the sections and the relativistic meaning of the duality betweenβ
andβ∗.

5. Geometry of theβ-duality; Riemannian structures

The groupP↑
+(1, 3) has the actionx 7→ x ′ = (a,A)x = a + 3x, on T 4. ConsideringT 4

as a manifold, we identify its tangent spaceTx(T 4), at any pointx, with T 4 itself. The
derivativeTx(a, A) of the mapx 7→ (a,A)x at x ∈ T 4 is simply 3. Let T 4∗ be the
dual space ofT 4 and considerT 4 × T 4∗ as the cotangent bundle ofT 4. (Note: While
in conformity with standard usage, we use an asterisk to denote the dual space, this does
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not reflect the duality implied by theβ∗ of the last section). Then any(a,A) ∈ P↑
+(1, 3)

induces the action(x, x∗) 7→ (a +3x,3∗x∗) on (x, x∗) ∈ T 4 × T 4∗, where3∗ is defined
by 〈x∗;3x〉 = 〈3∗x∗; x〉, (∀ x ∈ T 4), 〈· ; ·〉 being the dual pairing betweenT 4 andT 4∗.
In particular, take(x, x∗) = (0, 1m), 1m being the (non-zero) element inT 4∗ left invariant
by rotations, i.e.ρ∗1m = 1m, whereρ ∈ L↑

+(1, 3) is a rotation. The orbit of this point, in
T 4×T 4∗, under the action ofP↑

+(1, 3), can be identified withT 4×V+
m . Note also that, since

the tangent spaceTx∗(T 4∗), to T 4∗ at a pointx∗ ∈ T 4∗, can again be identified withT 4∗

itself, and sinceV+
m ⊂ T 4∗, it follows that at anyp ∈ V+

m , the tangent spaceTp(V+
m) ⊂ T 4∗

and the cotangent spaceT ∗
p (V+

m) ⊂ T 4. ConsiderT 4 × V+
m as a vector bundle with base

spaceV+
m and fibreT 4 abovep ∈ V+

m . The sub-bundle

W = {(x, p) ∈ T 4 × V+
m | 〈w∗; x〉 = 0, ∀ w∗ ∈ Tp(V+

m)} (5.1)

is called anormal bundleover V+
m [1, 9], and we denote the fibre ofW , abovep ∈ V+

m , by
Wp. (Wp is simply the annihilator of the tangent spaceTp(V+

m) at p.) A sub-bundle6 of
T 4 × V+

m is called aparallel bundleif

W ⊕6 = T 4 × V+
m (5.2)

the sum being understood in the sense thatWp ⊕ 6p = T 4, as vector spaces, (6p is the
fibre of6 at p).

In terms of the coordinatespi, i = 1, 2, 3, of p = (p0,p) ∈ V+
m , the tangent space

Tp(V+
m) is spanned by the three vectors

∂

∂pi
= 1

m

(
pi

p0
, êi

)
(5.3)

whereê1 = (1, 0, 0), ê2 = (0, 1, 0) and ê3 = (0, 0, 1). We add to this set the vector

∂

∂p0
= 1

m
(1, 0) (5.4)

to make{∂/∂pµ}3
µ=0 into a basis forT 4∗. Similarly, the cotangent spaceT ∗

p (V+
m) is spanned

by the covectors

dpi = m(0, êi ) (5.5)

to which we add the covector

dp0 = m

(
1,− p

p0

)
(5.6)

and obtain the dual basis{dpµ}3
µ=0 for T 4:〈

dpµ ; ∂

∂pν

〉
= δµν. (5.7)

Thus, the general tangent vectorsXp ∈ Tp(V+
m) and covectorsX∗

p ∈ T ∗
p (V+

m) are of the
form

Xp = m

3∑
i=1

qi
∂

∂pi
=

(
q · p
p0

, q

)
∈ T 4∗ X∗

p = m

3∑
i=1

qi dpi = m2(0, q) ∈ T 4. (5.8)

(Here qi is assumed to have the dimension of a length). WhenT 4∗ is equipped with the
Minkowski metricg (with diagonal elements 1,−1,−1,−1), Tp(V+

m) becomes a space-like
hyperplane:

Xp ·Xp = X†
pgXp = |q · p|2

p2
0

− ‖q‖2 < 0 (5.9)
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with (Minkowski) normal vectorn̂ = (1/m)(p0,p):

n̂ ·Xp = 0 = 〈dp0 ;Xp〉. (5.10)

In other words, the pseudo-metric−g, of signature(3, 1), (with three positive and one
negative eigenvalues) onT 4∗ restricts to a positive definite metric onTp(V+

m), for each
p ∈ V+

m . Furthermore, as a consequence of (5.10), the normal bundleW is seen to be

W = {(λ dp0, p) ∈ T 4 × V+
m | λ ∈ R} Wp =

{
λ dp0 = mλ

(
1,− p

p0

)
= λp | λ ∈ R

}
.

(5.11)

Consequently, a possible choice for the parallel bundle6 is

6 = {(X∗
p, p) ∈ T 4 × V+

m |X∗
p ∈ T ∗

p (V+
m)} = T ∗(V+

m) 6p = T ∗
p (V+

m). (5.12)

However, this is not the only possible choice for a parallel bundle, as we now demonstrate.
Sinceβ(p) in (3.11) satisfies (4.5), let us define the relativistic 4-velocity

n(p) = (n0(p),n(p)) n0(p) = [1 − ‖β(p)‖2]−
1
2

n(p)

n0(p)
= β(p). (5.13)

Then, by (3.10) the point̂q = (q̂0, q̂) ∈ T 4 satisfies

n(p) · q̂ = 0 (5.14)

i.e. q̂ lies on the space-like hyperplane with normal vectorn(p), determined byβ(p). Let
6
β
p denote this hyperplane. In particular, for theGalilean section

β(p) = β0(p) = 0 σ = σ0 6β
p = 60

p = {(0, q) | q ∈ R3} = T ∗
p (V+

m) (5.15)

while for theLorentz section

β(p) = β`(p) = p

p0
σ = σ` 6β

p = 6`
p =

{
q̂ ∈ T 4

∣∣∣∣ 1

m
p · q̂ = 0

}
(5.16)

so that6`
p is in fact isomorphic to the tangent spaceTp(V+

m) (see (5.10). Note that these
two sections are related by the duality of (3.12), i.e.β∗

0(p) = β`(p).
There is a natural isomorphismDp : T 4 → T 4∗, mappingT ∗

p (V+
m) to Tp(V+

m) with

Dp dpµ = ∂

∂pµ
µ = 0, 1, 2, 3. (5.17)

Similarly, there is an isomorphismFβp : T 4 → T 4, mapping60
p = T ∗

p (V+
m) to 6β

p with

Fβp (0, q) = q̂ F βp (1, 0) = (1,β(p)) (5.18)

with q̂ coming from (3.9):

Fβp =


1

p0

m
ϑ(p)†

β(p) I3 + p⊗ ϑ(p)†
m

 . (5.19)

Sincep = (p0,−p) is a time-like vector,Wp is a one-dimensional time-like subspace of
T 4, and since6β

p is space-like, equation (5.18) implies thatWp ⊕6
β
p = T 4. Hence

6β = {(X∗β
p , p) ∈ T 4 × V+

m |X∗β
p ∈ 6β

p } (5.20)

is a parallel bundle, which we call aspace-like parallel bundle. In other words, eachβ
determines abundle isomorphism(X∗

p, p) 7→ (F
β
p X

∗
p, p) = (X

∗β
p , p) between the parallel
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bundles6 = T ∗
p (V+

m) and6β . The corresponding affine sectionσ , (see equation (3.9)),
maps the phase space0 in (3.1) toσ(0), the latter being identifiable with the parallel bundle
6β . In particular, whenβ = β0, 0 is identified withT ∗

p (V+
m), while whenβ = β`, it is

identified with the parallel bundle6` which is isomorphic toTp(V+
m).

To sum up, each space-like affine sectionσ determines a space-like parallel bundle,
identifiable with its range, and the coherent statesησ(q,p) (see equation (3.15)) may be
thought of as being labelled by the points of this bundle. Each space-like parallel bundle
is determined by a mapu : V+

m → V+
m, u(p) = m{n(p)}, with u(p)/u0(p) = β(p) and

n(p) given by (5.13). The two extreme cases of this map arise whenβ = β0, giving rise
to the Galilean section, and its dualβ = β`, yielding the Lorentz section. In the first case,
u is the constant map,u(p) = (m, 0), ∀ p ∈ V+

m , while in the second,u is the identity
map,u(p) = p, ∀ p ∈ V+

m . Physically, whenσ = σ0, the phase space0 may be thought
of as consisting of all positions and momenta(q,p), of the particle of massm, when it is
observed from a fixed laboratory frame. In the case whereσ = σ`, 0 is to be identified
with the set of all space-time and momentum coordinates(q̂,p) of the particle, wherêq
is observed from a frame which is moving with the velocity,−p/p0, i.e. opposite to the
particle. A general sectionσ identifies the phase space with the set of all space-time and
momentum coordinates(q̂,p), with q̂ being observed from a frame moving, with respect
to the laboratory, with velocity−β(p).

The mapFβp in (5.19) equips the vector bundleT 4 × V+
m with a pseudo-metric, the

restriction of which toT ∗(V+
m) ⊂ T 4 × V+

m yields a positive definite metric on the fibres
T ∗
p (V+

m). Indeed, using equations (5.4), (5.8) and (5.18) we may rewrite (5.14) as〈
Fβ†
p (−g)Fβp X∗

p ; ∂

∂p0

〉
= 0 = (1, 0) [Fβ†

p (−g)Fβp ]

( 0

q

)
. (5.21)

Hence,T ∗(V+
m) is the hyperplane inT 4 with normal vector(1, 0), with respect to the

pseudo-metricFβ†
p (−g)Fβp . Let

R̃β =
3∑

µ,ν=0

(R̃βp )µν
∂

∂pµ
⊗ ∂

∂pν
(5.22)

where(R̃βp )µν are the matrix elements of the operator

R̃βp = Fβ†
p (−g)Fβp

=


−1 + ‖β(p)‖2 −p0

m
ϑ(p)† + β(p)†

[
I3 + ϑ(p)⊗ p†

m

]
−p0

m
ϑ(p)+

[
I3 + p⊗ ϑ(p)†

m

]
β(p) S(p,ϑ)


expressed in the{∂/∂pµ}–{dpµ} bases (S(p,ϑ) being as in (4.4))

(R̃βp )µν = dp†
µR̃

β
pdpν. (5.23)

In view of (5.18), when restricted to60
p = T ∗

p (V+
m), R̃

β
p reduces toS(p,ϑ), and thus

R̃
β
p defines a positive definite metric on the cotangent bundleT ∗

p (V+
m). Next write

(R
β
p )
µν = (R̃

β
p )µν . Then

Rβ =
3∑

µ,ν=0

(Rβp )
µνdpµ ⊗ dpν (5.24)
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defines a pseudo-metric onT 4∗ ×V+
m . Also, it is clear thatRβ restricts to a positive definite

metric onT (V+
m) and thereby equipsV+

m with a Riemannian structure. In fact, the restriction
of Rβ to Tp(V+

m) is againS(p,ϑ). Comparing with (5.9), we see that the affine sectionσ

determined by the 3-vector fieldβ has the effect of changing the pseudo-metric−g on T 4∗

to Rβ , both having signature(3, 1) and both being positive definite on the tangent space
Tp(V+

m).

6. Kinematic interpretation of the β-duality

Let us try to get a more physical understanding of theβ − β∗ duality in (3.11), (3.12).
From equations (5.13) and (5.14), we see that, with‖β(p)‖ < 1, (∀ p), we can associate
with β(p) the time-like 4-vector fieldu(p) = m{n(p)} which is normal to the space-like
hyperplane6β

p in T 4. More generally, ifp 7→ β(p) is a p-dependent 3-vector field, we
can associate with it a ray [u(p)] of p-dependent relativistic 4-vector fieldsu(p) in the
following way:

u(p) = (u0(p),u(p)) p = (p0,p)

u0(p) > 0
u(p)

u0(p)
= β(p)

(6.1)

with u(p) · u(p) = u0(p)
2 − ‖u(p)‖2. The 4-vectoru(p), and hence the ray [u(p)] =

R+{u(p)} is time-like, light-like or space-like according as‖β(p)‖ < 1, ‖β(p)‖ = 1 or
‖β(p)‖ > 1, respectively. Under a Lorentz transformation3, u(p) 7→ 3u(p) and

β(p) = u(p)

u0(p)
7→ β′(p) = 3u(p)

(3u(p))0
. (6.2)

Of course, such a transformation preserves the property ofu being time-like, light-like or
space-like, and hence of the equivalent properties of‖β(p)‖ being<, = or > 1. For any
u(p) ∈ [u(p)], the 4-vector field

u∗(p) = 3pu(p) (6.3)

depends onp only, (like u(p) itself). We callu∗(p) the dual of the 4-vector fieldu(p).
Then

u(p) = 3pu∗(p) u∗∗(p) = u(p) β∗(p) = u∗(p)
u∗

0(p)
(6.4)

andβ(p), β∗(p) satisfy the duality relationship in (3.12). Taking the dot product ofβ(p)
with p on both sides of (3.12), using the explicit form forVp in (2.10), and rearranging,
we get the relation

(p0 − p · β(p)) (p0 − p · β∗(p)) = m2 (6.5)

which has an interesting physical interpretation, as we shall see in (6.20). Similarly, one
may verify the matrix relation

(mVp − p⊗ β(p)†)(mVp − p⊗ β∗(p)†) = m2I3 (6.6)

which has a complementary physical interpretation (see (6.19). Note also, thatu∗(p) is
time-like if u(p) is time-like and vice-versa. Hence

‖β∗(p)‖ < 1 ⇔ ‖β(p)‖ < 1 . (6.7)

Physically, with each ordinary 3-vector velocityβ(p), u(p) associates a relativistic 4-
velocity n(p) (= u(p)/[u(p) ·u(p)] 1

2 , if u(p) ·u(p) 6= 0 and= u(p)/u0(p) if u(p) ·u(p) =
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0), while β∗(p) is the velocity obtained by relativistically adding the 3-velocity−β(p) to
the 3-velocity associated with the boost3p.

Below are details of some particular space-like affine sections and a light-like limiting
section, all of which have interesting physical interpretations.

(1) The Galilean sectionσ0

As noted in equation (5.15), for this section

β(p) = β0(p) = 0 ϑ(p) = ϑ0(p) = 0 β∗
0(p) = p

p0
ϑ∗

0(p) = p

m
. (6.8)

Here,‖β0(p)‖ < 1, ‖β∗
0(p)‖ < 1, ∀ p.

(2) The Lorentz sectionσ`

This time (see equation (5.16))

β(p) = β`(p) = β∗
0(p) ϑ(p) = ϑ`(p) = ϑ∗

0(p) (6.9)

in other words, the Galilean and Lorentz sections are duals to each other.

(3) The symmetric sectionσs

This section is self-dual, being given by

β(p) = βs(p) = β∗
s (p) = p

m+ p0
ϑ(p) = ϑs(p) = ϑ∗

s (p) = p

m+ p0
. (6.10)

Again, ‖βs(p)‖ < 1, ∀ p. Note that in a senseσs lies half-waybetweenσ0 andσ`. Indeed,
writing

ng = (1, 0) ns =
([
p0 +m

2m

] 1
2

,

[
1

2m(p0 +m)

] 1
2

p

)
n` = 1

m
(p0,p) (6.11)

we find that

n` = n∗
g = 3png = 3png n∗

s = ns

32
(mns)

= 3p n` = 3(mns)ns = 32
(mns)

ng
(6.12)

so that the velocityβs lies half-way betweenβ0 andβ`.

(4) The limiting sectionsσ±

These sections are duals of each other and are both light-like, being given by

β(p) = β+(p) = p

‖p‖ ϑ(p) = ϑ+(p) = mp

‖p‖(p0 − ‖p‖)
β−(p) = β∗

+(p) = − p

‖p‖ ϑ−(p) = ϑ∗
+(p) = − mp

‖p‖(p0 + ‖p‖) .
(6.13)

In this limiting situation,‖β+(p)‖ = ‖β−(p)‖ = 1, ∀ p.

We end this discussion by analysing the relationship between physical events observed
from reference frames attached to different sections. We identify the rest or laboratory
frame with the Galilean frameKg, i.e. we associate the laboratory with the Galilean section
σ0. Similarly, to eachβ we attach a frameKβ (understood pointwise, for eachp), moving
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with velocityβ = β(p) with respect toKg. In other words,Kβ is the frame attached to the
space-like affine sectionσβ . In particular, to the Lorentz sectionσ` we attach the reference
frameK`, moving with velocityp/p0 with respect to the Galilean frame. As before, let
u(p) = m{n(p)}, with n(p) the 4-velocity corresponding toβ(p) (see equation (5.13)).
Then, following (2.9), the Lorentz transformation which boostsKg to Kβ is

3β = 1

m

(
u0 = (1 − ‖β‖2)

1
2 u†

u mVu

)
. (6.14)

Let (qβ0 , q
β) be the coordinates of an event when seen fromKβ . The corresponding

coordinates with respect toKg (see equation (2.14)) are

3β(q
β

0 , q
β) =

(
1

m
(u0q0 + u · qβ

)
,

1

m

(
uq0 +mVuq

β
)

= (q
g

0 , q
g) (6.15)

while those with respect toK` are

(q`0, q
`) = 3p3β(q

β

0 , q
β). (6.16)

Here

q`0 = 1

m2
(u0p0 − u · p)qβ0 + 1

m2
u0p0u · qβ − 1

m
p · Vuqβ, (6.17)

q` = − 1

m2
(u0p−mVpu)q

β

0 − 1

m2
u0pu · qβ + VpVuq

β. (6.18)

Consider all events lying in6β
p , i.e. all events for whichqβ0 = 0. Combining equation (6.15)

with (6.17) and (6.18) and applying (6.6) to get the inverse relation, we obtain

q` =
(
Vp − p⊗ β†

m

)
qg qg =

(
Vp − p⊗ β∗†

m

)
q`. (6.19)

In particular, ifβ = βs , the symmetric section, thenq` andqg coincide. Thus the spatial
coordinates of an event localized to a space-like hyperplane6s

p of the symmetric section,
appear same when observed from the laboratory or the Lorentz frame. Similarly, if we
consider events for whichqβ = 0, then as before we obtain (see equation (6.5))

q`0 = 1

m
(p0 − p · β)qg0 q

g

0 = 1

m
(p0 − p · β∗)q`0. (6.20)

Once again, considering the symmetric section, the temporal coordinates of an event taking
place at the spatial origin of a space-like hyperplane6s

p, appear same when observed from
the laboratory or the Lorentz frame. These two sets of relations point up yet another aspect
of theβ − β∗-duality.

Finally, it is tempting to speculate on the meaning of certain pseudo-differential
equations arising from the quantized versions of the two relations (6.5) and (6.6). Making
the replacementpj → −i∂/∂qj , j = 1, 2, 3, turnsp0 − p · β(p) into a pseudo-differential
operator andmVp − p⊗ β(p)† into a matrix pseudo-differential operator. Let

D =
(
p0 − p · β(p) 0†

0 mVp − p⊗ β(p)†
)

(6.21)

D∗ =
(
p0 − p · β∗(p) 0†

0 mVp − p⊗ β∗(p)†

)
(6.22)
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both considered as matrix pseudo-differential operators. Ifψ0 andψ1 are each 4-component
wavefunctions, relations (6.5) and (6.6) together give rise to the 8× 8 matrix pseudo-
differential equation

1

m

( 0 D

D∗ 0

)(
ψ0

ψ1

)
=

(
ψ0

ψ1

)
(6.23)

or equivalently

DD∗ψ0 = m2ψ0 and D∗Dψ1 = m2ψ1. (6.24)

It would be interesting to investigate, both physically and mathematically, the meaning of
these Dirac-type equations.

7. Spin-s frames and coherent states

From now on, unless otherwise stated, we shall work with space-like affine sectionsσ ;
actually the only exceptions will be the two limiting sectionsσ± in (6.13). Thus we shall
assume that the conditions of proposition 4.1 hold.

Going back to the computation ofIφ,ψ in (3.21), we note that the dq integration yields
a δ-measure inX, and hence, making the change of variablesk → X, integrating and
rearranging (using equation (4.1)) we obtain

Iφ,ψ =
∫

V+
m×V+

m

φ(k)†Aσ (k, p)ψ(k)
dp

p0

dk

k0
(7.1)

whereAσ (k, p) is the(2s + 1)× (2s + 1)-matrix kernel

Aσ (k, p) = (2π)3m
2s+1∑
i=1

[
p0 + p · ρ(k → 3−1

k p)
† β∗

(
−3−1

k p
)]−1

×Ds(v(k,3−1
k p)) η

i (ρ(3−1
k p)

−1ρ(k → 3−1
k p)p)

×ηi (ρ(3−1
k p)

−1ρ(k → 3−1
k p)p)

† Ds(v(k,3−1
k p))

† (7.2)

where ρ(p), ρ(k → p) and v(k, p) are given by equations (3.17), (4.2) and (3.20),
respectively. Assuming the integral (3.16) to exist for allφ,ψ ∈ Hs

W , let us write

Aσ (k) =
∫

V+
m

Aσ (k, p)
dp

p0
. (7.3)

Then the operatorAσ in (3.14) is a matrix-valued multiplication operator:

(Aσφ)(k) = Aσ (k)φ(k) φ ∈ Hs
W . (7.4)

At this point we make two simplifying assumptions on the nature of the vectors
ηi ∈ Hs

W , i = 1, 2, . . . ,2s + 1.

(i) Assumption of rotational invariance of the operator
∑2s+1

i=1 |ηi〉〈ηi |, i.e. ∀ R ∈ SU(2)

Ds(R)

[
2s+1∑
i=1

|ηi〉〈ηi |
]

Ds(R)† =
2s+1∑
i=1

|ηi〉〈ηi |. (7.5)

This implies that(2s+1∑
i=1

|ηi〉〈ηi |
)
(k) = I2s+1 |η(k)|2 (7.6)
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whereη ∈ L2(V+
m, dk/k0), and thus we may simply take forηi ∈ Hs

W the vectors

ηi = êi ⊗ η i = 1, 2, . . . ,2s + 1 (7.7)

the êi being the canonical unit vectors inC2s+1 (i.e. êi = (δij ), j = 1, 2, . . . ,2s + 1).
(ii) Assumption of rotational invariance of|η(k)|2 in (7.6):

|η(ρk)|2 = |η(k)|2 ∀ ρ ∈ SO(3). (7.8)

We shall generally refer to these two assumptions as theassumption of rotational
invariance. With this, the kernelAσ (k, p) in (7.2) simplifies to

Aσ (k, p) = aσ (k, p) |η(p)|2 I2s+1

aσ (k, p) = (2π)3m

p0 + p · ρ(k → 3−1
k p)

† β∗
(
−3−1

k p
) . (7.9)

On Hs
W define the operators(P0,P )

(Pµφ)(k) = kµφ(k). (7.10)

We shall also denote the analogous operators onL2(V+
m, dk/k0) by the same symbols.P−1

0
is a bounded operator with spectrum [0, 1

m
]. With the above simplifications (7.3) becomes

Aσ (k) = 〈aσ (k, P )〉η I2s+1 (7.11)

where 〈·〉η denotes theL2(V+
m, dk/k0) expectation value with respect to the vectorη in

(7.6). Hence for the operatorAσ (see equation (7.4))

‖Aσ‖ = sup
k∈V+

m

|〈aσ (k, P )〉η| (7.12)

provided this supremum exists. On the other hand, since‖β∗
(
−3−1

k p
)

‖ < 1 and

‖ρ(k → 3−1
k p)

†‖ = 1, from (7.9) we get

1

(2π)3m
(p0 − ‖p‖) < 1

aσ (k, p)
<

1

(2π)3m
(p0 + ‖p‖) . (7.13)

The two extreme values in the above inequality are actually reached for the limiting sections
σ± (see (6.10)). Thus, we have the following result.

Lemma 7.1.If ‖β(p)‖ 6 1, ∀ p, thenaσ (k, p) is a bounded function satisfying

(2π)3

m
(p0 − ‖p‖) 6 aσ (k, p) 6 (2π)3

m
(p0 + ‖p‖). (7.14)

Suppose now thatη lies in the domain ofP
1
2

0 , i.e.∫
V+
m

|η(k)|2 dk < ∞ (7.15)

and set

〈P0 ± ‖P ‖〉η =
∫

V+
m

(p0 ± ‖p‖)|η(p)|2 dp

p0
. (7.16)

Then equations (7.1), (7.9) and (7.14) together imply the following.
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Lemma 7.2.If the assumption of rotational invariance onηi , i = 1, 2, . . . ,2s + 1 is

satisfied, and ifη ∈ Dom(P
1
2

0 ), then for allβ such that‖β(p)‖ 6 1, ∀ p
(2π)3

m
〈P0 − ‖P ‖〉η ‖φ‖ ‖ψ‖ 6 |Iφ,ψ| 6 (2π)3

m
〈P0 + ‖P ‖〉η ‖φ‖ ‖ψ‖. (7.17)

As a consequence of this lemma we see that both the operatorAσ in (3.14) and its
inverse,A−1

σ , are bounded, with

(A−1
σ φ)(k) = [〈aσ (k, P )〉η]−1φ(k) φ ∈ Hs

W . (7.18)

Indeed, collecting all these results we obtain the following.

Proposition 7.3.Let ηi , i = 1, 2, . . . ,2s+1, satisfy the condition of rotational invariance.
Then for eachβ satisfying‖β(p)‖ 6 1, ∀ p, the set of vectorsSσ in (3.15) is a family
of spin-s coherent states, forming a rank-(2s+ 1) frameF{ηiσ (q,p), Aσ , 2s+ 1}, if and only
if η ∈ Dom(P

1
2

0 ). The operatorAσ acts via multiplication by a bounded invertible function
Aσ (k) given by (7.11) andA−1

σ via multiplication by the functionA−1
σ (k). Moreover

(2π)3

m
〈P0 − ‖P ‖〉η 6 ‖Aσ‖ 6 (2π)3

m
〈P0 + ‖P ‖〉η (7.19)

and

Spectrum(Aσ ) ⊂ (2π)3

m

[〈P0 − ‖P ‖〉η, 〈P0 + ‖P ‖〉η
]
. (7.20)

Note that since we are assuming rotational invariance, we could just as well have done
without the restriction,R(q,p) = R(p), in defining the sectionsσ in (3.9). The following
construction now emerges for building spin-s coherent states for the representationsUs

W

(see (2.6)) of massm > 0 ands = 0, 1
2, 1, 3

2, 2, . . ., of P↑
+(1, 3):

(i) Choose a functionβ : R3 → R3, such that‖β(p)‖ 6 1, ∀ p, or equivalently, a map
u : V+

m → V+
m as in (6.1); choose an arbitrary measurable functionR : R3 → SU(2) and

construct the corresponding affine space-like (or in the limit, the affine light-like) section
σ , using equations (3.9)–(3.11).
(ii) Choose anη ∈ L2(V+

m, dk/k0), satisfying equations (7.8) and (7.15) and form the vectors
ηi , i = 1, 2, . . . ,2s + 1, using equation (7.7).
(iii) Construct the family,Sσ , of coherent statesηiq,p) using equation (3.14).

While this procedure provides us with a large class of CS and frames, the latter are
generally not tight, i.e.Aσ is not, in general, a multiple of the identity. A few special
cases worked out below will make this statement clearer. For computational purposes, the
following expressions prove useful (assuming rotational invariance):

aσ (k, p) = (2π)3m(3−1
k p)0

mk0 −
[
k0

(
3−1
k p

)
+ k(3−1

k p)0

]
· ϑ

(
−3−1

k p
) (7.21)

and

Iφ,ψ = (2π)3
∫

V+
m×V+

m

φ(k)†
m

mk0 − (k0p+ kp0) · ϑ(−p) |η(3kp)|2ψ(k) dp
dk

k0
. (7.22)
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(1) The Galilean sectionσ0

From equations (6.8) and (7.21)

aσ (k, p) = a0(k, p) = (2π)3

m

k0p0 − k · p
k0

(7.23)

and using the rotational invariance of|η(k)|2

Aσ (k) = A0(k) = (2π)3

m
〈P0〉η I2s+1. (7.24)

Hence

Aσ = A0 = (2π)3

m
〈P0〉η I (7.25)

so that the frame is tight.

(2) The Lorentz sectionσ`

From equations (6.9) and (7.9)

aσ (k, p) = a`(k, p) = (2π)3m

p0
(7.26)

so that

Aσ (k) = A`(k) = (2π)3m〈P−1
0 〉η I2s+1. (7.27)

Thus

Aσ = A` = (2π)3m〈P−1
0 〉η I (7.28)

and once again the frame is tight.

(3) The symmetric sectionσs

From equations (6.10) and (7.22)

Iφ,ψ = (2π)3
∫

V+
m×V+

m

φ(k)†
k0p0 +m2

m(k0 + p0)
|η(p)|2ψ(k) dp

p0

dk

k0
. (7.29)

Thus

aσ (k, p) = as(k, p) = (2π)3
k0p0 +m2

m(k0 + p0)
(7.30)

and

Aσ (k) = As(k) = (2π)3
〈
k0P0 +m2

m(k0 + P0)

〉
η

I2s+1. (7.31)

The operatorAσ = As is now given by

(Asφ)(k) = As(k)φ(k) = (2π)3
〈
k0P0 +m2

m(k0 + P0)

〉
η

φ(k) φ ∈ Hs
W . (7.32)

To determine the spectrum ofAs , note that the functionf : [m,∞) → R+, defined by

f (k0) = (2π)3
k0p0 +m2

m(k0 + p0)
(7.33)
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is uniformly bounded for allp0 ∈ [m, c], for any finite c > m. Also, f ′(k0) 6= 0, for
all k0, p0 > m and, f (m) = (2π)3, f (∞) = (2π)3p0/m. Thus, (2π)3 6 f (k0) 6
(2π)3p0/m, which, by virtue of (7.31), implies that

Spectrum(As) = (2π)3
[
‖η‖2,

〈P0〉η
m

]
. (7.34)

Hence, in this case, the frame is never tight.

We end by proving the stability of the class of affine sections under the action of
P↑

+(1, 3). If σ : 0 → P↑
+(1, 3) is any section then, as shown in [4], for arbitrary

(a,A) ∈ P↑
+(1, 3), σ(a,A) is again a section where

σ(a,A)(q,p) = (a,A)σ((a,A)−1(q,p)) = σ(q,p) h((a,A), (a,A)−1(q,p)) (7.35)

(a,A)−1(q,p) being the translation of(q,p) by (a,A)−1 under the action (3.5) and

h((a,A), (a,A)−1(q,p)) = σ(q,p)−1(a,A)σ((a,A)−1(q,p)) ∈ T × SU(2) .

Moreover, if σ defines the frameF{ηiσ (q,p), Aσ , 2s + 1}, then σ(a,A) defines the frame
F{ηiσ(a,A)(q,p), Aσ(a,A) , 2s + 1}, whereAσ(a,A) = U(a,A)AσU(a,A)

∗. Let A denote the class
of all affine space-like sections, defined by (3.8) – (3.10) and satisfying the conditions of
proposition 4.1, but withϕ not necessarily assumed to be zero. Then:

Proposition 7.4.If σ ∈ A thenσ(a,A) ∈ A, for all (a,A) ∈ P↑
+(1, 3).

In view of this result (the proof is given in the appendix), starting with any family of
coherent statesSσ , we may generate an entire class of covariantly translated familiesSσ(a,A)

of other coherent states, using the natural action (7.35) ofP↑
+(1, 3) on the space of sections.

If σ is characterized byβ andϕ, thenσ(a,A) is characterized byβ′ andϕ′, the relationship
between them being given by (A.7) below.

8. Some specific applications

Coherent states enable us to view states and observables of quantum mechanical systems
in a very special manner. For instance, if we consider the hydrogen atom, we can
transcribe its continuum and bound state wavefunctions, dipole operators, etc., in terms
of an overcomplete basis consisting of Galilean CS built up as:

〈r|q,p〉 =
(
U(σ0(q,p))

∑
n,`,m

Sn,`,m

)
(p0, r)

where theSn,`,m(p0, r) are the so-called Sturmian functions [15]. The Sturmians form a
complete discrete basis set in the Hilbert space. The states〈r|q,p〉 are especially adapted
to computations of, for example, matrix elements of multi-photon processes in the Galilean
regime [12], [17]. The same holds true in the intermediate relativistic regime, where the
Dirac or the Feynman–Gell–Mann equation, with external field, remains valid for describing
the interaction of a charged spin-1

2 particle with the electromagnetic field (and where a full
QED model is not warranted). For recent work in atomic physics in this direction, see, e.g.,
[18]. The spin-Sturmian functions for the Feynman–Gell–Mann equation were obtained in
[8]. These wavefunctions can be used to build relativistic CS in the spirit of the present
paper:

〈r|q,p, s〉 =
(
Us
W(σ(q,p))

∑
n,`,m

Ssn,`,m

)
(p0, r) .
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The freedom in the choice of available sections, in building the coherent states, can now
be exploited, in addition to the freedom which already exists in the choice of the Sturmian
probe. The various sectionsσ , discussed in this paper, also have applications to relativistic
statistical mechanics in the computation of distribution functions [11].

Appendix

Derivation of equation (4.1)

Rewriting (4.2) asρ(k → p)3k3
−1
p = 3−1

p 3k, and acting on the vector(m, 0) with both
sides of this equation we obtain

ρ(k → p)3kp = 3−1
p k . (A.1)

Next, by equation (3.13),

k0 + 1

m
(k0p− kp0) · ϑ(p) = k0 + 1

m
(k0p− kp0) ·

( p
m

− Vpβ
∗(p)

)
.

Using the explicit form ofVp from (2.10) and simplifying we get

k0 + 1

m
(k0p− kp0) · ϑ(p) = p0

m2
k · p − p0

m

[
k0p

m
− Vpk

]
· β∗(p)

= p0

m

[
(3kp)0 +

(
3pk

)
· β∗(p)

]
by virtue of (2.14). From this equation (4.1) follows directly upon using (A.1).

Proof of proposition 4.1

We start with (i). The condition rewritten as‖q̂‖2 − |q̂0|2 > 0, implies by (3.10) and (3.11)
that q · S(p,ϑ)q > 0, ∀ q ∈ R3, q 6= 0, which is equivalent to (ii). The equivalence of
(i) and (ii) follows directly from (3.10), while the equivalence of (iii) and (iv) has been
established in (6.7). �

Proof of proposition 4.2

Suppose that̂q is space-like. Then by proposition 4.1,‖β∗‖ < 1. Hence, sinceρ(k → p̂)

in (4.1) is a rotation matrix∥∥∥∥ (3kp)

(3kp)0
· ρ(k → p)†β∗(p)

∥∥∥∥ < 1 ⇒ 1 + (3kp)

(3kp)0
· ρ(k → p)†β∗(p) > 0

i.e. det[JX(k)] > 0 (by equation (4.1)).
Conversely, assume that det[JX(k)] > 0. Then by equation (3.23)

1 + p · ϑ(p)
m

>
p0

m

k

k0
· ϑ(p) .

Takingk in the direction ofϑ(p) and letting‖k‖ → ∞, the above inequality implies that

1 + p · ϑ(p)
m

>
p0

m
‖ϑ(p)‖

which, in view of condition (iii) of proposition 4.1, implies thatq̂ is space-like. �
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Proof of proposition 7.4

If ϕ is included in the definition of the section, it is easily checked that

q̂0 = p0

m
(ϕ(p)+ ϑ(p) · q) q̂ = p

m
ϕ(p)+ q + 1

m
pϑ(p) · q. (A.2)

From this it follows that

q̂0 = p0

m
ϕ(p)+ β(p) · (q̂ − p

m
ϕ(p)) ⇒ n(p) · q̂ = n(p) · p

m
ϕ(p) (A.3)

with n(p) given by (5.13). Next, write3 = 3kρ, where ρ is a rotation. Then
3−1 = 3ρ−1k ρ−1, so that writing (q′,p′) = (a,A)−1(q,p) in (7.35), we get (see
equation (3.5))

q′ = −a0

m
ρ−1k + ρ−1Vk(q − a) p′ = 3−1p (A.4)

with Vk as in (2.10).
Thus, if σ is the affine section corresponding to the quantitiesβ andϕ, and(q̂ ′, p′) =

σ(q′,p′), then

n(p′) · q̂ ′ = n(p′) · p′

m
ϕ(p′). (A.5)

Let

(q̂ ′′, h(p)) = (a,A)σ(q′,p′) = (a,A)(q̂ ′, h(p′)) = (a +3q̂ ′, h(p))

andn′(p) = 3n(p). Clearly,β′ = 3n/(3n)0 satisfies‖β′‖ 6 1 if ‖β‖ 6 1 . Furthermore

n′(p) · q̂ ′′ = n′(p) · (a +3q̂ ′)

= n′(p) · p
m

[
n(p) · (m3−1a + ϕ(p)p)

n′(p) · p
]
. (A.6)

Thus,σ(a,A)(q,p) is again an affine section corresponding to the quantitiesβ′ andϕ′, with

β′(p) = 3n(p)

(3n(p))0
ϕ′(p) = n(p) · (m3−1a + ϕ(p)p)

n′(p) · p . (A.7)

�
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